spin-transfer torque oscillator

By Darlene Kelley,2014-05-21 03:26
13 views 0
Spin dynamicsOrigin of V-AV motion

     The spin-transfer torque oscillator is based on the interaction of a spin-polarized current with a magnetic film. This interaction results in two effects: magneto-resistance and spin-transfer torque. Magneto-resistance is the dependence of the electrical resistance on the relative orientation of the magnetization and the spin of the incident electrons. Spin-transfer torque is the torque exerted by the spin-polarized electrons on the magnetic film. In the spin-transfer torque oscillator, the spin-transfer torque is used to drive a GHz oscillation of the magnetization direction of the magnetic film. This oscillation is then transformed into an oscillating electrical signal by the magneto-resistance effect. The electrical signal can be used as a reference oscillator in wireless equipment.


    The basis of magneto-electronics is the manipulation of the electron spin.

    Electron, the particles that carry electrical current, do not only possess charge,

    but also spin. This spin makes every single electron act as a tiny magnet.

    Although all materials contain a large number of electrons, most of them are not magnetic. This is because the spin-orientation differs from electron to electron, thereby averaging out the magnetization to zero. Only in magnetic materials the electron spins add up to generate a net magnetic field.

    Fig. 1 Top: non-magnetic material. The electron-spins, represented by the arrows and red-and-white color, are randomly oriented. Bottom: magnetic material. The electron-spins are aligned and the material behaves as a magnet.

    For magneto-electronic applications, one would like to create and manipulate electrical currents that have a net spin moment. A convenient way to create such a spin-polarized current is by sending it through a magnetic material. Within the magnetic material, which naturally exhibits a net spin moment, the current will quickly get spin-polarized. When the current leaves the magnetic material, it will retain its spin-polarization for a certain distance in the non-magnetic material.

    -polarized current in, e.g., copper or, with This way it is possible to inject a spin

    somewhat more difficulty, in semiconductors. The distance over which a considerable spin-polarization is retained depends on the material and varies from tens of nanometers to tens of micrometers.

    Fig. 2 Spin-polarized current injected in a normal metal. When a current is send from a magnet (left, red box) to a normal metal (right, blue box), its spin-polarization will be retained over a certain distance.


    In the previous section it was shown how one can inject a spin-polarized current into a non-magnetic metal. However, the most interesting phenomena occur when a spin-polarized current is injected into a magnetic material. For example, the resistance that the spin-polarized current experiences will depend on the direction of the spin-polarization with respect to the magnetization of the magnetic material. This so-called magneto-resistance effect will be addressed in the next section. Here we will the discuss spin-torque excerted by such a current on the magnetic material.

    Spin-torque is the torque exerted by a spin-polarized current on a magnetic film. When the spin of the incident electrons and the magnetization of the film are not parallel, a torque will be exerted on the magnetic film. The process is illustrated schematically in Fig. 3. The electrons entering the magnetic material (right) from the non-magnetic material (left) have their spin initially pointing in the top-right direction. However, due to scattering and dephasing processes the spin of the incident electrons will quickly align with that of the magnetization. Looking at the spin-direction on the left- and right-side of the interface, we see that the spin-component transverse to the magnetization direction has been absorbed by the magnetic material. This absorption will cause a torque on the magnetic film that tries to rotate the magnetization clockwise.