DOC

The Nonlinear Singularly Perturbed Problems for Elliptic Equations with Boundary Perturbation

By Melanie Tucker,2014-08-05 22:57
6 views 0
The Nonlinear Singularly Perturbed Problems for Elliptic Equations with Boundary PerturbationThe,for,with,the

    The Nonlinear Singularly Perturbed

    Problems for Elliptic Equations with

    Boundary Perturbation

    烹取'NORTHEAST.MATH.J

    23(4)(2007),293--297

    TheNonlinearSingularlyPerturbedProblems

    forEllipticEquationswithBoundary

    Perturbation

    MOJia-qi1.2(莫嘉琪),ZHANGWei-jiang2,3(张伟江)andCHENXian-feng2,3(陈贤峰)

    (.DepartmentofMathematics,AnhuiNormalUniversity,Wuhu,DD)

    (2.DivisionofComputationalScience,E-InstitutesofShanghaiUniversitiesatSJTU, Shanghai,2oo24

    (3.DepartmentofMathematics,ShanghaiJiaotongUniversity,Shanghai,2DD) Abstract:Thenonlinearsingula$lyperturbedproblemsforellipticequationswith boundaryperturbationareconsidered.Undersuitableconditions,byusingthetheory ofdifferentialinequalitiestheasymptoticbehaviorofsolutionsfortheboundaryvalue problemsisstudied.

    Keywords:nonlinear,ellipticequation,singularperturbation,boundaryperturba- tion

    2000MRsubjectclassification:35B25.35J60

    CLCnumber:0175.29

    Documentcode:A

    ArticleID:1000-1778(2007)04-0293-05

    1Introduction

    Thenonlinearsingularlyperturbedproblemisaveryattractiveobjectofstudyinthe internationalacademiccircles(see).Duringthepastdecademanyapproximatemethods

    havebeendevelopedandrefined,includingthemethodofaveraging,boundarylayermethod, methodsofmatchedasymptoticexpansionandmultiplescales.Recently,manyscholarssuch asAkhmetov,LavrentievmandSpigler[2],

    BellandDeng[3],Hwangm[4],Zhang[,Ammari,

    KangandTouibi[6],

    KhasminskiiandYin[7],

    Marques[8andBobkova[9havedoneagreat

    dealofworksontheseproblems.UsingthedifferentialinequalitiesandothermethodsMo eta1.consideredalsoaclassofnonlinearsingularlyperturbedproblems(Seelo-2o]).In

    thispaper,usingaspecialandsimplemethod,westudyboundaryvalueproblemsforaclass ofsingularlyperturbednonlinearellipticequationswithboundaryperturbation. Nowweconsiderthefollowingnonlinearsingularlyperturbedproblem: Eu=f(r,,u,E),(r,)?s,(1.1)

    2;

    

    

    .王‰

    

    啪?

    _

    M

    藏一

    

NoRTHEAST.MATH.JVoL.23

    =9(,)),Of/e:r=(,)),(1.2)

    where)isasmallpositiveparameter,

    :m

    +2(r'+

1ir+2a12re+a22(+),>0

    isauniformlyellipticoperator,(r;)?Q=..(7.,)l0r(,)))denotesabounded

    convexregioninR,andesignifiesthesmoothboundaryofQProblem(1.1)(1.2)

    isaDirichletboundaryvalueproblemforanellipticequation.Thispaperinvolvesaclass ofnonlinearsingularlyperturbedproblemswihboundaryperturbation.Weconstructthe

    asymptoticexpansionofasolutionanddiscussitsasymptoticbehavior. Weneedthefollowinghypotheses:

    [H1Thecoefficientsin,,gandaresufficientlysmoothfunctionswithrespectto theirvariablesincorrespondingdomains.

    2r,,,))c1>0,a(0,)a0>0,wherec1anda0areconstants.

    2FormalAsymptoticSolution

    Wenowconstructtheformalasymptoticexpansionforthesolutionoftheproblem(1.1)- (1.2).;

    Thereducedproblemoftheproblem(1.1)(1.2)is

    J(r,,,0)=0,(r,)?fi0.(2.1)

    Obviously,thereexistsasufficientlysmoothsolutionu0fortheequation(2.1). LettheformalexpansionoftheoutersolutionUfortheoriginalproblem(1.1)(1.2)be

    

    ?.(2.2)

    i=0

    Substituting(2.2)into(1.1),developing,in),andequatingcoefficientsofthesame

    powersof)respectively,fort=1,2,weobtain

    =

    F,/(r,,Uo,0),(r,)?Q{,(2.3)

    where,i=1,2,,aredeterminedfunctions.

    From(2.2)weobtaintheoutersolutionUfortheoriginalproblem.Butitmaynotsatisfy theboundarycondition(1.2),SOthatweneedtoconstructaboundarylayercorrectiveterm .

    Weintroduceastretchedvariable(see[1):

    r

p'

    Andletthesolutionoftheoriginalproblem(1.1)-(1.2)be

    =

    U(r,,))+v(p,,)).(2.4)

    Substituting(2.4)into(1.1)(1.2),wehave

    e2LV=l(ep,,U+))f(ep,,)),()?Q.,

    V=9(,))(,)),P=(,))/E.

    (2.5)

    (2.6)

NO.4MO3Q.eta1.NONLINEARSINGULARLYPERTURBEDPROBLEMS295

    (2.7)

    Substituting(2.4),(2.2)and(2.7)into(2.5)(2.6),expandingnonlineartermsin),and equatingthecoefficientsofthesamepowersof),weobtain .(02V0

    ,(0,,+.,.)+f(o,,,.)=.,(r,?Qs,

    0=(,0)u0(0,),P=(,O)/).

    Fori=1,2,,wehave

    .(.,)等一九(.,,+.)+=0-()?Qt,

    V=glmGi,P=(,O).

    (2.8)

    (2.9)

    (2.1O)

    (2.11)

    Obviously,Fi,Giaresuccessivelydeterminedfunctions.

    Fromtheproblems(2.8)(2.9)and(2.10)(2.II),wecanobtainV0andVi,i=1,2,, whichsatisfy

    =

    D(eXp{p))=O(exp{一‰)),o<)《1,

    whereki?ki1,i=0,1,2,,arepositiveconstants. Thenwecanconstructthefollowingformalasymptoticexpansionofthesolutionfor

    theoriginalproblem(1.1)(1.2):

    

    ?+vi]e',0<)《1.(2.12)

    3TheMainTheorem

    Nowweprovethat(2.12)isauniformlyvalidasymptoticexpansions.

    Theorem3.1Underthehypotheses[H1and[n2],thereexistsasolutionolthenonlin earsingularlyperturbedproblem(1.1)(1.2),whichsatisfiesholdstheuniformlyvalidasymp

    toticexpansion(2.12),0r(r,)?(Q+012)).

    Proo1.WefirstconstructtheauxiliaryfunctionsQand

    Q=一)+

    ,

    =+)+l,

    (3.1)

    (3.2)

    whereisapositiveconstantlargeenough,whichwillbedecidedbelow,and

    ym三?[+.i=0

    Obviously,wehave

    Q,(r,?(Q+Q).(3.3)

    ?

    p

    ??:i

    (

    t

    e

    L

NORTHEAST.MATH.JVOL.23

Andtherearepositiveconstants

    ,MIsuchthatforr:(,s), a=ymsm+=?+?一如m+1

    -!m

    +g(,0)%(o,)+?一+MISm+ls'1 (,s)+(+)sm+1.

    Thusselecting(+),wehave (,),(r,)?.(3.

    4)An

    alogously,wecanprovethat,

    ?夕(,),(r')?Qs.(3.

    5)Nowweprovethat, s口一,(r',,)?0,(r')?Q,(3.

    61

    s,(r',,)0,(r,?)?Q.(3.

    7)

    By

    

    thehyp.the,for.smallen.ughand0<s6

    0,thereisapos~ivec0ttM2, suchthat

    62La,(r,,a,)

    =s2rms+】一/(r,,a,s) =s2三【ymJf(r,,ym,s)+[,(r,,ym,s)/(r,,a,s) ?/(r,,uo,o)+?(r'Uo,o)阢一只

    +)-/(o,Uo+vo,0)+,(0,,uo,0)J

    .

    +0(0嚣(,,+)+一州+c1m+1 ?(^+c16)6m+.

    M

    2/cl,thenweprovedtheinequality(3.6). Analogonsly,caIlpr0ve

    theinequality(3.7).Thusfrom(3.3)(3.7)Weobtain ,(r',s?(r,,s)Z(r,,s),(r,,s)?(Q+Q)×[0,soJ.From(3.1)and(3.2)weobtain'

    u=?f++0(sm+),0<s1.

    TheproofoftheTheoremisi=

    co

    0

    mpleted.

    References

    [1

    l;hi

    deJager

    (

    ,E?MoandJiang,F.

    R.,TheT~eoryofSingularPerturbation,North-HouandPu1)-Cnsnlngo

    .,Amsterdam.1996.'……

    (2Akh

    i

    m

    .l

    etov,D.R.,Lavrentievm,Jr.M.M.andspler,R.,Singularperturbati.nsf0r.ertain

    partdifferentialequation8withoutboundary-

    la

    yers,

    

    Asy'mptoticAnaL(

    ,35'I

N0.4MoQ.ea/.NONLINEARSINGULARLYPERTURBEDPROBLEMS297

    3Bell,D.C.andDeng,B.,SingularperturbationofN

    fronttravelingwavesintheFitzhugh

    Nagumoequations,NonlinearAna1.RealWorldApp1.,3(2003),515-541.

    4

    Hwangm,S.,Kineticdecompositionforsingularlyperturbedhigherorderpartialdifferential equations,J.Differentia2Equations,200(2004),191-205'

    [5Zhang,F.,Coexistenceofapulseandmultiplespikesandtransitionlayersinthestanding wavesofareactiondiffusionsystem,DifferentialEquations,205(2004),77.155. 6

    Ammari,H.,Kang,H.andTouibi,K.,Boundarylayertechniquesforderivingtheeffective propertiesofcompositematerials,AsymptoticAna1.,41(2oo5),1l9'140. 7]Khasminskii,R.Z.andYin,G.,Limitbehavioroftwo-time-scalediffusionrevisited,J.Dil-

    ,erentialEquations,212(2oo5),85-113.

    8

    Marques,I.,Existenceandasymptoticbehaviorofsolutionsforaclassofnonlinearelliptic equationswithNeumanncondition,NonlinearAna1.,61(2005),21-40.

    f91Bobkova,A.S.,Thebehaviorofsolutionsofmultidimensionalsingularlyperturbedsystem

    withonefastvariable,J.Differentia2Equations,41(2005),23-32.

    10

    Mo,J.Q.,Asingularlyperturbednonlinearboundaryvalueproblem,Math.Ana1.App1., 178(2003),289-293.

    11

    Mo,J.Q.,Thesingularlyperturbedproblemforcombustionreactiondiffusion,ActaMath. App1.Siniea,17(2001),255-259.

    [12

    [13

[14

    [15

    [16

    [17

    [18

    [19

    [20

    Mo,J.Q.,Singularperturbationforaclassofnonlinearreactiondiffusionsystems,Sci.in China,32A(1989),1306-1315.

    Mo,J.Q.andLin,W.T.,Anonlinearsingularperturbedproblemforreactiondiffusion equationswithboundaryperturbation,ActaMath.App1.Siniea,21(2oo5),101-104. Mo,J.Q.andShao,S.,Thesingularlyperturbedboundaryvalueproblemsforhigher-order semilinearellipticequations,Adv.inMath.(C,30(2001),141148.

    Mo,J.Q.andZhang,H.L.,Thesingularlyperturbedproblemsofnonlocalsemilinearelliptic equations,ActaMath.App1.Sinica,21(1998),471-473.

    Mo,J.Q.andWang,H.,TheshocksolutionforquasilinearsingularlyperturbedRobinprob. 1em,Pl伽打l?0tuSci.,12(20021,945-947.'

    Mo,J.Q.,Zhu,J.andWang,H.,Asymptoticbehavioroftheshocksolutionforaclassof nonlinearequations,P饥?nfur.Sci.,13(2003),768-770.

    Mo,J.Q.,Lin,W.T.andZhu,J.,AvariationaliterationsolvingmethodforENSOmechanism, PinNatur.Sci.,14(20041,1126-1128.

    Mo,J.Q.andLin,W.T.,PerturbedsolutionfortheENSOnonlinearmodel(inChinese), Acta!s.nica,53(2004),996-998.

    Mo,J.Q.andLin,W.T.,HomotopicsolvingmethodofequatorialeasternpacificfortheE1 Nino/LaNino-Southernoscillationmechanism,ChinesePhys.,14(2005),875-878.

Report this document

For any questions or suggestions please email
cust-service@docsford.com