DOCX

HERE

By Theodore Myers,2014-07-08 10:44
9 views 0
FREE ELECTRONS; ELECTRON IN A POTENTIAL WELL (BOUND ELECTRON); FINITE POTENTIAL BARRIER (TUNNEL EFFECT); ELECTRON IN A PERIODIC FIELD OF A CRYSTAL (THE SOLID STATE) ...

    FUNDAMENTALS OF ELECTRON THEORY

; The Wave-Particle Duality

    ; The Time-Independent Schrodinger Equation

; Solution of the Schrodinger Equation for Four Specific Cases

    1. Free Electrons

    2. Electron in a Potential Well (Bound Electron)

    3. Finite Potential Barrier (Tunnel Effect)

    4. Electron in a Periodic Field of a Crystal (the Solid State)

; Energy Bands in Crystals

    1. One-Dimensional Zone Schemes

    2. One- and Two-Dimensional Brillouin Zones

    3. Three-Dimensional Brillouin Zones

    4. Wigner-Seitz Cells

; Electrons in a Crystal

    1. Fermi Energy and Fermi Surface

    2. Fermi Distribution Function

    3. Density of States

    4. Population Density

    5. Complete Density of States Function Within a Band

    6. Consequences of the Band Model

    7. Effective Mass

    ELECTRICAL PROPERTIES OF MATERIALS

    ; Electrical Conduction in Metals and Alloys

    1. Conductivity-Classical Electron Theory

    2. Conductivity-Quantum Mechanical Considerations

    3. Experimental Results and Their Interpretation

    4. Pure Metals

    5. Alloys

    6. Ordering

    7. Superconductivity

    8. Thermoelectric Phenomena

    ; Semiconductors

1. Band Structure

    2. Intrinsic Semiconductors

    3. Extrinsic Semiconductors

    4. Donors and Acceptors

    5. Temperature Dependence of the Number of Carriers 6. Conductivity

    7. Fermi Energy

    8. Effective Mass

    9. Hall Effect

    10. Compound Semiconductors

    11. Rectifying Contacts (Schottky Barrier Contacts) 12. Ohmic Contacts (Metallizations)

    13. p-n Rectifier (Diode)

    14. Zener Diode

    15. Solar Cell (Photodiode)

    16. Transistors: bipolar and MOSFETs

    ; Electrical Properties of Polymers, Ceramics, Dielectrics

1. Amorphous Materials

    2. Conducting Polymers and Organic Metals 3. Ionic Conduction

    4. Conduction in Metal Oxides

    5. Amorphous Materials (Metallic Glasses) 6. Dielectric Properties

    7. Ferroelectricity, Piezoelectricity, and Electrostriction

    OPTICAL PROPERTIES OF MATERIALS

    ; The optical constants

1. Index of Refraction,

    2. Damping Constant

    3. Characteristic Penetration Depth, W, and Absorbance 4. Reflectivity, R, and Transmittance, T 5. Hagen-Rubens Relation

    ; Atomistic Theory of the Optical Properties

1. Free Electrons Without Damping

    2. Free Electrons With Damping (Classical Free Electron Theory of Metals)

    3. Special Cases

    4. Reflectivity

    5. Bound Electrons (Classical Electron Theory of Dielectric Materials)

    6. Quantum Mechanical Treatment of the Optical Properties

    7. Absorption of Light by Interband and Intraband Transitions

    8. Optical Spectra of Materials

    ; Measurement of the Optical Properties: Spectroscopic Ellipsometry

; Optoelectronic Applications

    1. Carbon Dioxide Laser

    2. Semiconductor Laser

    3. Direct-Versus Indirect-Band Gap Semiconductor Lasers

    4. Wavelength of Emitted Light

    5. Threshold Current Density

    6. Homojunction Versus Heterojunction Lasers

    7. Light-Emitting Diodes (LEDs)

    8. Integrated Optoelectronics

    9. Passive Waveguides

    MAGNETIC PROPERTIES OF MATERIALS

; Basic Concepts in Magnetism

    1. Diamagnetism

    2. Paramagnetism

    3. Ferromagnetism

    4. Antiferromagnetism

    5. Ferrimagnetism

    6. Langevin Theory of Diamagnetism

    ; Quantum Mechanical Considerations Paramagnetism and Diamagnetism

    Ferromagnetism and Antiferromagnetism

    . .

Report this document

For any questions or suggestions please email
cust-service@docsford.com