Data Driven Decision Making Fact Sheet

By Yolanda Collins,2014-04-01 21:47
7 views 0
Data Driven Decision Making Fact SheetData,fact,Fact,Sheet,data,sheet

    Connections to Learning

    Fact Sheet


     Using and evaluating data are important steps to the school improvement process. Data are any information about the school that can be gathered, reviewed and analyzed in order to produce a useful knowledge (NCREL, 2004). Looking at the combination of pieces of knowledge and facts together, whether it has to do with demographics, achievement, test scores, or climate, helps schools formulate hypotheses to decide how best to use the information. Basing educated guesses upon data are the beginning steps in creating an effective and efficient school improvement process. Educators can focus their attention on specific indicators that are being displayed by the data, and identify priority areas in which they direct their focus (Bernhardt, 2004). Once priority areas are narrowed down realistic goals are made and moving into action becomes the next step (Bernhardt, 2004). Reviewing data, forming hypotheses, and creating action plans helps the school move toward the goal of creating positive change in the school.


     Creating goals from data are realistic because educators are looking at real facts produced by the school. Too long educators have practiced under the assumption that problem areas lay in certain areas. The assumed problems were not identified through actual facts, therefore, the school improvement team would address a problem that may or may not exist (NCREL, 2006). Data-driven decision making looks to eliminate this methodology, and help schools identify and combat the real problems that are occurring in individual schools. Data provides educators with an overview of the strengths and weaknesses in the targeted area (NCREL, 2006). When targeted areas are identified educators can prioritize their resources and professional development in order to produce more efficient and effective programs. Connection to Learning employs a data driven process fro problem solving and action planning.

    Using data makes settings school goals deliberate and worthwhile. The use of resources will not be wasted upon programs that are ineffective and professional development can then address specific needs. For example, in a school that does not use data-driven decision making, professional development may look scattered and unintentional. The staff may seem uninterested, or find the information not useful because they see no use to their particular area. If the school uses data-driven decision making to determine professional development, the staff will benefit because professional development will be focused toward their needs (NCREL, 2004). Also, in a school that makes their decisions based on assumptions, budgetary problems may occur (NCREL, 2006). Schools are used to using allocated money for programs already in place or programs they think will be effective. Basing needs on assumptions or routine perpetuates cycles and ineffective practices that waste money. Budgeting based on needs of the school allows the school to put their money toward priority areas which will help the school with achieving the goals of improvement (NCREL, 2006).

    Connections to Learning provides a vehicle for a school or district team to utilize data for needs assessment, planning, and evaluation. Data driven decision making and Connections to Learning are symbiotic.

    Connections to Learning

     Fact Sheet



    Data use is a multifaceted arena. There are many different areas where educators can collect data, such as, achievement, demographics, school climate, or performance. The use of the data that are produced from the different elements in a school or district is what separates a successful school from non successful school. If a school uses data-driven decision making to make hypotheses about potential reform efforts, the entire school improvement process will be strengthened.


    To move toward a data-driven decision making school, there are eight steps that help guide the process. The eight-step process is as follows: develop a leadership team; collect and organize several different types of data; analyze data patterns; generate hypotheses; develop goal-setting guidelines; design specific strategies for the action plan; plan the evaluation and implement the plan (Bernhardt, 2004). By following the steps listed, a school can collaborate and prioritize needs in order to sustain a vision that focuses on school improvement (NCREL, 2004).

    One example of using data-driven decision making comes from the research produced by Lachat and Smith (2005). The two researchers implemented the data driven decision making process in five urban, low performing high schools (Lachat & Smith, 2005). Before the initiative, the high schools faced problems related to the data they collected. In general, the schools’ data were inaccurate, not time efficient, and limited in its’ scope. Lachat and Smith (2005) helped the school to collaborate to make a district-level plan to improve the data process. The researchers helped the school to develop a leadership team to share and coach each other through the data process. Being exposed to the data allowed the staff to feel more comfortable reviewing and using the results. Lachat and Smith (2005) also helped coach the leadership team into breaking down the data they were receiving. Breaking down the data allowed for the team to see where they should target their focus and instructional strategies (Lachat & Smith, 2005). The staff learned to allocate their resources towards programs and supports that were more beneficial for their school. Overall, Lachet and Smith used data to help the five urban schools develop a continuous, collaborative, and more advanced school improvement process.

    Connections to Learning

     Fact Sheet

    Citations and Resources

    ndBernhardt, V.L. (2004). Data analysis for continuous school improvement (2 Ed.). Larchmont, NY:

    Eye on Education.

    Lachat, .A., & Smith, S. (2005). Practices that support data use in urban high schools. Journal of

    Education for Students Placed at Risk, 10(3), 333-349.

    Love, N. (2002). Using data/getting results: A practical guide for school improvement in mathematics

    and science. Norwood, MA: Christopher-Gordon Publishers.

    North Central Regional Educational Laboratory. (2006). Using data as a school improvement tool.

    Learning Point Associates.

    North Central Regional Educational Laboratory (2004). Guide to using data in school improvement

    efforts: A compilation of knowledge from data retreats and data use at learning point associates.

    Learning Point Associates.

    Streifer, P.A. (2004). Tools and techniques for effective data-driven decision making. Lanham, MD:

    Scarecrow Education. (The Center for Comprehensive School Reform and Improvement) (Learning Point Associates) (North Central Regional Education Laboratory)

Report this document

For any questions or suggestions please email