DOC

Amino

By James Alexander,2014-07-23 03:23
6 views 0
Aminoamino,Amino

    Amino

ChineseJournalofChemicalEngineering,16(3)456460(2008)

    ;AminoAcidsProductionfromFishProteinsHydrolysisin ;SubcriticalWater

    ;ZHUXian(朱宪),ZHUChao(朱超),ZHAOLiang(赵亮)andCHENGHongbin(程洪

    )

    ;DepartmentofChemicalEngineering,SchoolofEnvironmentandChemicalEngineering,

    ShanghaiUniversity,

    ;Shanghai201800,China

    ;1INTRoDUCTIoN

    ;Chinaisthelargestmarketoffisheryintheworld. ;andthereisapproximately40%oceanmarineproducts ;processedinChina1],butthefishproteinsutilization ;ratioisless30%.Besides.40%45%wastescanbe

    ;producedinfisheryprocessing.whichmeansthatalarge ;amountofbiomassisdiscardedaswaste.Thesewastes ;alsocontainalotofproteinsandbioactivematter2].

    ;Thechemicalpropertiesofsuper(sub)critical ;wateraresimilarwithacetone,anditsionicproductis ;overthousandfoldthatofnormalwater.So,itplays ;theroleofcatalystasacidoralkaliwithoutanyenvi

    ;ronmentalpollution[3-7].ThebiomasscanbehVdro

    ;lyzedintohighvalueindustrialrawmaterial:amino ;acid,unsaturatedfattyacid(DHA,EPA,etc.),oil, ;polysaccharideandsoon.YoshidaP,.[8]studied ;hydrolysisoffishforproducingaminoacidsbyusing ;asetofstainlesssteeltubewith5mlcapacityunder ;protectionofargon.Inthisarticle,weinvestigated ;hydrolysisoffishproteinsinasuper(sub)criticalwater ;reactorwith400mlcapacitytoproduceaminoacid. ;Theselaydrolysisexperimentswerestudiedunderthe ;atmosphereofair,nitrogenorcarbondioxideinstead ;ofargontoreducethecostofindustrialproduction. ;Undertheconditionofwaterexcess.themacroscopic ;reactionkineticswereobtainedforfishproteinshydroly

    ;sis.Theseresultsareveryusefulforindustrialization. ;2EXPERIMENTAL

    ;2.1Materials

    ;(1)Fishmeat:purchasedfrommarket

    ;f2118kindsofpureaminoacidreagent(bio

    ;chemicalreagentgrade):ShanghaiKangdaAmino ;AcidFactory.

    ;(31Hydrochloricacid36%(bymass)ARgrade. ;(4)AAADirectaminoacidanalysisapparatus: ;D10NEXCo..USA.

    F(0.2L+1.5MG)/30MPaIIAsuper-critical ;(51HL

    ;waterequipment:HangzhouHualiPumpCo.(Fig.1); ;reactiontemperaturefromroomtemperatureto550.C: ;reactionpressure.035MPa;capacity.2001300m1.

    ;(61ElectronicscaleAB104N:MettlerToledoCo., ;Shanghai.

    ;2.2Subcriticalwaterhydrolysis

    ;TheexperimentalflowchartisdepictedinFig.1. ;Thereactorwasfilledbychosenreactionatmosphere ;(nitrogen.airorcarbondioxide1at0.15MPa.Then ;putquantitativedeionizedwater(about200m1)into ;reactorandsetreactiontemperatureforthermostat. ;Thefishmeatemulsionwaspreparedwithacolloidal ;milltogetthehomogeneousmilkysampleatthecon

    ;centrationof100gmeatperliter~Whenthetempera

    ;tureandpressureofreactorreachedtothepresetval

    ;ues,fishproteinsemulsionsamplewasinjectedinto ;reactorbyhighpressuremeteringpumprapidly.Al

    ;thoughnostirringwasapplied,themixturewasin ;boilinglikestatusunderthesubcriticalstate.The ;timerstartedafterinjection,andsamplingwascon

    ;ductedatregularintervalforanalysis.

    ;2.3Hydrochloricacidhydrolysis

    ;Thefishproteinshydrolysiswascarriedat108.C ;Received20070925.accepted20080301.

    ;SupposedbytheNationalNaturalScienceFoundationofChina(50578091)andShanghai

    LeadingAcademicDisciplineProject

    ;(T-105).

    ;Towhomco~espondenceshouldbeaddressed.Email:xzhu@staff.shu.edu.ca ;

    ;Chin.J.Chem.Eng.,Vo1.16,No.3,June2008 ;Figure1F1OWchartofsubcriticalwaterhydrolysisexperimentalapparatus

    ;1feedingvesse1;3_reacti0natmospherebottle;4,5ump;6,7

    watertank;8~pressurereactor;9--feedingfunnel; ;10---samplingdevice;11--coolingdevice;12--collector ;300

    ;200

    ;

    ;100

;05.010.015.020.025.030.035.040.0

    ;Figure2Compareofaminoacidchromatogrambetweenstandardandsamplehydrolysateo

    ffishproteins

    ;a--arginine;blvsine;calanine;dtnreonine;eglycine;tVaJ1ne;proline;n

    senne;l--lsoleuclne;j--leuclne;

    ;k_

    methionine;1_histidine;m~phenylalanine;n--glutamicacid;o--aspartate;p--cystme;q

    tyrosine;r~tryptophan

    ;for28hin20%(bymass)HC1solution.Thetotal ;aminoacidyieldinhydrolysatewastakenasthetheo

    ;reticaltotalaminoacidsyieldafterentirelyhydrolyzed. ;2.4Aminoacidanalysis

    ;Thequantitativedeterminationoftheaminoacids ;wasdeterminedbyBioLC(AminoAcidAnalyzer, ;D10NEX.USA,.Comparisonofaminoacidchroma

    ;togrambetween18kindsofaminoacidstandardsam

    ;piesandhydrolysatesampleoffishproteinswas ;showninFig.2.

    ;3RESUISANDDISCUSSION

    ;3.1Reactiontemperature

    ;Figure3showsthattherelationshipofaminoacid ;yieldwithreactiontemperatureisdifferentfordifferent ;kindsofaminoacidunderthesamereactiontimeand ;pressure.Theyieldofaminoacidinhydrolysaterises ;withincreasingtemperatureatfirst,thendecreases, ;exceptcystinewhoseyieldseemsverylowandinde

    ;D

    ;bD

    ;g

    ;

    ;temperature/.C

    ;Figure3Effectofreactiontemperatureonaminoacid ;yield(5MPa,30min)

    ;tyrosine;arginine;?alanine;?cystine;-isoleucine;

    ;?leucine;?histidine;phenylalanine

    ;pendentwithtemperature.Thisisperhapsbecauseof ;decompositionofaminoacidin115lghtemperature9].

    ;Thereisamaximumyieldforeachaminoacid,butthe ;correspondingtemperatureisdifferentfromeachother. ;3.2Reactiontime

    ;Figure4showsthattheyieldofaminoacidsin ;

    ;Chin.J.Chem.Eng.,Vo1.16,No.3,June2008 ;

;?

    ;

    ;

    ;reactiontime/rain

    ;Figure4Effectofreactiontimeonaminoacidyieldin ;hydrolysate(5MPa,260.C)

    alanine;?cystine;?isoleucine; ;tyroine;arginine;?

    ;?leucine;?histidine;vphenylalanine

    ;hydrolysateriseswithincreasingreactiontimeatfirst, ;thendecreasesalittle,exceptcystinewhichislike ;independentwithreactiontime.

    ;3.3Reactionpressure

    ;7

    ;6

    ;5

    ;?

    ;4

    ;3

    ;>,2

    ;1

    ;pressure/MPa

    ;Figure5Effectofpressureonaminoacidyieldinhydro. ;lysate(260.C,30min)

    ;tyrosine;arginine;?alanine;?cystine;?isoleucine

    ;?leucine;?histidine;vphenylalanine

    ;tyrosineandphenylalaninemaybeinair.

    ;Itisfoundthataminoacidscouldbeproducedin ;air,nitrogenorcarbondioxide,anditismuchcheaper ;thanothermethodsofhydrolysisforbreakingdown ;biomasSwn1chrequtreexpensiveargongas.111ISlm

    ;provementcanhelpinindustrialconversionot1310

    ;massintoausefulresource.

    ;Figure5showsthattheeffectofpressureon ;yieldofaminoacidsinhydrolysat

    ;.

    ;esnotverymarked4HYDROLYSISKINETICS

    ;ascomparedw1thtemperatureandlame.

    ;3.4Contrastofdifferentatmosphereresults ;Figure6showsthattheeffectofdifferentreac

    ;tionatmosphereondifferentaminoacidyieldinhy

    ;drolysateisdifferent.NOmatterwhateveratmosphere ;isused,thereisagiventemperatureformaximum ;yieldofaminoacidinhydrolysate.Fig.6suggestthat ;leucine.histidineandisoleucineshouldbehvdrolyzed

    ;inatmosphereofnitrogenorcarbondioxide,while ;

    ;?

    ;h

    ;

    ;,

    ;>,

    ;temperature/.C

    ;(a)Leucine

    ;

    ;

    ;

    ;?

    ;g

    ;

    ;Biomasshydrolysiskineticsinsuper ;fsub)criticalwaterhavebeenstudied[1012].Hy

    criticalwater ;drolysiskineticsoffishproteinsinsub

    ;wasresearchedinthisarticle.

    ;4.1Kineticsformulaoffishproteinshydrolysis ;Itisverydifficulttoanalyzethefishprotein,but ;veryeasytodeterminethetotalyieldofaminoacids ;temperature/.C

    ;(b)Tyrosine

    ;

    ;

    ;

    ;?

    ;bo

    ;

    ;temperature/~C

    ;(c)Histidine

    ;temperature/.Ctemperature/.C

    ;(d)Isoleucine(e)Phenylalanine

    ;Figure6Theaminoacidyieldinhydrolysateoffishproteinsversustemperatureundernitrog

    en(?),air(?),carbondioxide

    ;(?)atmosphererespectively

    ;

    ;Chin.J.Chem.Eng.,Vo1.16,No.3,June2008459 ;inhydrolysateatdifferentreactiontimebyusing ;AAADirect.TheaminoacidyieldrateXatanytime ;canbedefinedas:

    ;X=M(a)f/M(a)0

    ;whereM(a1isthetotalamountofaminoacidsinhy

    ;drolysateatdifferentreactiontime.M(a)othetotal ;amountofaminoacidsinhydro1Vsateoffishproteins ;entirehydrolysisbyusinghydrochloricacid.So,the ;fractionofremainderfishproteinsatanytimeis1X.

    ;Thehydrolysisoffishproteinsisasfollows:

    aminoacid+otherproducts ;fishproteins+water

    ;(2)

    ;So,thehydrolysiskineticequationmaybeexpressedas ;d(1x)/dt=-K(1X)”[H20](3)

    ;inwhichtisthereactiontime(),Kthehydrolysis ;rateconstant,anda,barethereactionorder. ;Inthisexpenment.thewaterismuchmoreex

    ;cessive,soH201canbesetasaconstanttobein

    ;corporatedintoSoEq.(3)canbeturnedintoEq.(4): ;d(1X)/dt=-k(1Xa(4)

    ;IntegratingEq.(4)leadstoEq.(5):

    ;x=1[1k(1)f]1/(1

    ;AccordingtotheArrheniusequation:

    ;lnk:/RT+InA

    ;(5)

    ;wherekisthehydrolysisrateconstant,theactive ;energy,andAthepreexponentialfactor.

    ;Thevaluesofaandkcanbeobtainedbynonlinear

    ;numericalfittingofexperimentaldatatoEq.(5).Eaand ;AmaybeobtainedfromlinearplotoflnkversusliT. ;4.2Kineticsparameters

    ;(1X)valueschangingwithreactiontimeunder ;differenttemperatureareshowedinTable1.Theef- ;fectofreactiontimeon(1X)atdifferenttempera

    ;turesisshowedinFig.7.

    ;t/rain

    ;Figure7(1X)changingwithreactiontimeunderdif- ;ferenttemperatures

    ;220.C:?240.C:?260.C

    ;Table2Thevaluesofk.Inkand1,under

    ;differenttemperatures

    ;valuesunderdifferenttemperatureareinTable2.The ;relationshipbetweenInkand1/RTisshowninFig.8.

    ;Eais145~1kJmo!andthepreexponentialfactoris

    ;9.476×10(mg.g)0.615~s1.

    ;

    ;6.5

    ;-

    ;6.0

;

    ;5.5

    ;

    ;

    ;

    ;5.0

    ;4.5

    ;

    ;4.0

    ;1851.901.952.002.05

    ;-

    ;104/RT

    ;Figure8Inkversus(-I/RT)

    ;Table1(1X)valueschanging,’rithreacti0?timeunder5CONCLUSIONS ;differenttemperatures

    ;Itisfoundthatthehydrolysisreactionorderis ;1.615,andthereactionrateconstantlnkand1/RT

    ;f11Differentaminoacidshowsdifferentrela

    ;tionshipbetweenreactiontemperatureandaminoacid ;yield,evenunderthesafflereactiontimeandpressure. ;Thereisamaximumyieldforeachaminoacid,butthe ;correspondingtemperatureisdifferentfromeachothen ;(2)Reactionatmospheremaybecarbondioxide. ;nitrogenandair.Leucine,histidineandisoleucine ;shouldbehydrolyzedinatmosphereofnitrogenor ;carbondioxide.Theotherscanbehydrolyzedinat

    ;mosphereofair.

    ;f31Theexperimentalresultsshowthatthehy

    ;drolysisreactionorderis1.615andthevelocitycon

    ;stantsare0.0017,0.0045and0.0097minat220?.

    ;240?and260?respectivelY.Theactivationenergy ;is145.1kJmolandtheArrheniuspreexponential

    ;factoris9.476x10(mg.g1).??s.

    ;

    ;Chin.J.Chem.Eng.,Vo1.16,No.3,June2008 ;REFERENCES

    ;2

    ;3

    ;4

    ;5

    ;6

    ;Zhao.Z.X..Zhu,Y,Yang,X.H.,”Theactualityandexpectationof

    ;marinefivesmanufactureinChina”,Hehafv.,15(4),3O34

    ;f2001).(inChinese)

;YOshida.H.,Terashima,M.,Lkahashi,Y,”Productionoforganic

    ;acidsandaminoacidsfromfishmeatbysub..criticalwaterhydroly--

    ;sis”,Biotechno1.Prog.,15,lO901094f1999).

    ;Saphier,D.,Raymond,E,”Designofhighlymoderatedpressurized

    ;waterreactorbasedoncrifiealheatfluxconsiderations”,Nuc1.Eng

    ;Des.163.26327l(1996).

    ;Yutaka,I..”Fundamentalpropertiesofsupercicalwater’’,J.Japan

    ;Soc.Corros..,3(49),117121(2000).

    ;Zhang,L.L.,Chen,L.,Zhao,X.F,Yu,JL.,Tian,Y-L.,”Su—

    ;per-criticalwater:Itspropertiesandapplied”,J.Chem.Ind.Eng.,20

    ;(1).3436f2003).(inChinese)

    ;Yang,J.C.,Shen,Z.Y,”Technologyofsuper-criticalfluidsandits ;appliedinbiochemicalengineering”,Progr.Chem.Eng.,(4),3438

    ;(1997).(inChinese)

    ;7WanQ.,Zhu,X.,”Tblueneoxidizationtobenzaldehydein

    ;subcriticalwater,,,-,.em.Eng.C.【如.,19(4),503506

    ;(2005).(inChinese)

    ;8Yoshida,H.,Lkahashi,Y,Terashima,M.,”Asimplifiedreaction

    ;modelforproductionofoil,aminoacid,andorganicacidsfromfish

    ;meatbyhydrolysisundersub—eftticalandsupercriticalcondkions”,J

    ;Chem.Eng.Jpn.,36,441448f2003). ;9Sato,N.,Armando,O.,Kang,K.,Daimon,H.,Fujie,K.,”Reacfion

    ;kineticsofaminoaciddecomposmoninhightemperatureand ;high—pressurewater’’,App1.Chem.,43,3—8(2004).

    ;10Minowa,,Inoue,S.,Hanaoka,,”Hydrothermalreactionofglu—

    ;coseandglycineasmodelcompoundsofbiomass”.Jpn.Inst.En—

    ;ergy,10(83),794798(2004).

    ;11Tim,R.,HerrlTlann,S.,Brunner,G,”Productionofanlinoacidsfrom

    ;bovineserumalbuminbycontinuoussubcriticalwaterhydrolysis”,

    ;Supercrit.Fluids,36,4958f2005). ;12Khuwijitjaru,E,Fujii,T.,Adachi,S.,Kimura,Y,Matsuno,R.,”Ki—

    ;neticsonthehydrolysisoffattyacidestersinsubcriticalwater’’,J

    ;ChemEnP..99,l_4(2004).

    ;1l?’IIIl.I….…...Il|IIlII…II…….IL?ILl_?__?Ill?l?’l?I’.hlIIllI…h…IhhIIhI ;BOOKSFROMELSEVIER(www.elsevierdirect.corn) ;HandbookforCleaning/DecontaminationofSurfaces

    ;ByJohanssonandSomasundaran

    ;ProductType:Hardcover

    ;Price:$630.00

    ;SubjectArea:Chemistry&ChemicalEngineering-ChemicalEngineering

    ;Haveyoueverthoughtaboutwhatisinyourwashingpowder?Orwhyyouneedsomanydiffe

    rentcleaningagentsinyourhouse?

    ;Whynothaveonemultipurposecleanerforeverything?Wouldyouliketoknowhowyou

    canavoidgettingyourwindowsorcar

;dirtyinthefirstplace?

    ;TheseandmanyotherquestionsarediscussedintheHandbookfortionofSurfaces.ThefoCUSofthisbook

    ;liesoncleaninganddecontaminationofsurfacesandsolidmaRer,hardaswellassof1.This2volumereferencesourceaddresses:

    chemicalfhndamentalsunderlyingthecleaningproce;currentknowledgeofthephysico

    ss;

    ;thedifferentneedsforcleaningandhowtheseneedsaremetbyvarioustypesofcleaningprocessesandcleaningagents,including

    ;novelapproaches;

    ;howtotestthatcleaninghastakenplaceandtowhatextent;

    ;theeffectsofcleaningontheenvironment;

    ;futureVendsincleaninganddecontamination.

    ;Abriefinvoductionisgiventothelegaldemandsconcerningtheenvironmentandthedevelopmentofdetergents,fromsoapsto

    ;modernsophisticated/brmulations.Thoroughdiscussionsofmechanismsforcleaningaregiveninseveralchapters,bothgeneral

    ;basicconceptsandspecia1casessuchasparticlecleaning.

    ;ModelinginTransportPhenomena

    ;AConceptualApproach,2Edition

    ;ByTosun

    ;ProductType:Softcover

    ;Price:$95.00SubjectArea:Chemistry&ChemicalEngineeringChemicalEngine

    ering

    ;ModelinginTransportPhenomena,SecondEditionpresentsandclearlyexplainswithexampleproblemsthebasicconceptsand

    ;theirapplicationstofluidflow,heattransfer.masstransfer.chemicalreactionengineeringandthermodynamics.Abalancedapproach

    ;ispresentedbetweenanalysisandsynthesis,studentswillunderstandhowtousethesolutioninengineeringanalysis.Systematic

    ;derivationsoftheequationsandthephysica1significanceofeachtermaregivenindetail_forstudentstoeasilyunderstandandfo1

    ;lowupthemateria1.Thereisas~ongincentiveinscienceandengineeringtounderstandwhyaphenomenonbehavesthewayitdoes.

    ;Forthispurpose.acomplicatedreallifeproblemistransformedintoamathematicallytra

    ctableproblemwhilepreservingtheessen

    ;tialfeaturesofit.Suchaprocess,knownasmathematicalmodeling,requiresunderstandingofthebasicconcepts.Thisbookteaches

    ;studentsthesebasicconceptsandshowsthesimilaritiesbetweenthem.Answerstoal1problemsareprovidedallowingstudentsto

    ;checktheirsolutions.Emphasisisonhowtogetthemodelequationrepresentingaphysicalphenomenonandnotonexploitingvari

    ;OUSnumericaltechniquestosolvemathematicalequations.

    ;

;

Report this document

For any questions or suggestions please email
cust-service@docsford.com