DOC

Modul 11doc - Teknik Industri Universitas Mercu Buana Jakarta

By Justin Harper,2014-06-23 08:13
17 views 0
Modul 11doc - Teknik Industri Universitas Mercu Buana Jakarta

BAHAN MODUL 1

    LAHIRNYA KIMIA LATIHAN STRUKTUR ATOM

1. Lahirnya Kimia

    Kimia modern dimulai oleh kimiawan Perancis Antoine Laurent Lavoisier (1743-1794). Ia menemukan hukum kekekalan massa dalam reaksi kimia, dan mengungkap peran oksigen dalam pembakaran. Berdasarkan prinsip ini, kimia maju di arah yang benar. Sebenarnya oksigen ditemukan secara independen oleh dua kimiawan, kimiawan Inggris Joseph Priestley (1733-1804) dan kimiawan Swedia Carl Wilhelm Scheele (1742-1786), di penghujung abad ke-18. Jadi, hanya sekitar dua ratus tahun sebelum kimia modern lahir. Dengan demikian, kimia merupakan ilmu pengetahuan yang relatif muda bila dibandingkan dengan fisika dan matematika, keduanya telah berkembang beberapa ribu tahun. Namun alkimia, metalurgi dan farmasi di zaman kuno dapat dianggap sebagai akar kimia. Banyak penemuan yang dijumpai oleh orang-orang yang terlibat aktif di bidang-bidang ini berkontribusi besar pada kimia modern walaupun alkimia didasarkan atas teori yang salah. Lebih lanjut, sebelum abad ke-18, metalurgi dan farmasi sebenarnya didasarkan atas pengalaman saja dan bukan teori. Jadi, nampaknya tidak mungkin titik-titik awal ini yang kemudian berkembang menjadi kimia modern. Berdasarkan hal-hal ini dan sifat kimia modern yang terorganisir baik dan sistematik metodologinya, akar sebenarnya kimia modern mungkin dapat ditemui di filosofi Yunani kuno.

    Jalan dari filosofi Yunani kuno ke teori atom modern tidak selalu mulus. Di Yunani kuno, ada perselisihan yang tajam antara teori atom dan penolakan keberadaan atom. Sebenarnya, teori atom tetap tidak ortodoks dalam dunia kimia dan sains. Orang-orang terpelajar tidak tertarik pada teori atom sampai abad ke-18. Di awal abad ke-19, kimiawan Inggris John Dalton (1766-1844) melahirkan ulang teori atom Yunani kuno. Bahkan setelah kelahirannya kembali ini, tidak semua ilmuwan menerima teori atom. Tidak sampai awal abad 20 teori ato, akhirnya dibuktikan sebagai fakta, bukan hanya hipotesis. Hal ini dicapai dengan percobaan yang terampil oleh

    kimiawan Perancis Jean Baptiste Perrin (1870-1942). Jadi, perlu waktu yang cukup panjang untuk menetapkan dasar kimia modern.

    Sebagaimana dicatat sebelumnya, kimia adalah ilmu yang relatif muda. Akibatnya, banyak yang masih harus dikerjakan sebelum kimia dapat mengklaim untuk mempelajari materi, dan melalui pemahaman materi ini memahami alam ini. Jadi, sangat penting di saat awal pembelajaran kimia kita meninjau ulang secara singkat bagaimana kimia berkembang sejak kelahirannya. a. Teori atom kuno

    Sebagaimana disebut tadi, akar kimia modern adalah teori atom yang dikembangkan oleh filsuf Yunani kuno. Filosofi atomik Yunani kuno sering dihubungkan dengan Democritos (kira-kira 460BC- kira-kira 370 BC). Namun, tidak ada tulisan Democritos yang tinggal. Oleh karena itu, sumber kita haruslah puisi panjang “De rerum natura” yang ditulis oleh seniman Romawi Lucretius (kira-kira 96 BC- kira-kira 55 BC).

    Atom yang dipaparkan oleh Lucretius memiliki kemiripan dengan molekul modern. Anggur (wine) dan minyak zaitun, misalnya memiliki atom-atom sendiri. Atom adalah entitas abstrak. Atom memiliki bentuk yang khas dengan fungsi yang sesuai dengan bentuknya. ”Atom anggur bulat dan mulus sehingga dapat melewati kerongkongan dengan mulus sementara atom kina kasar dan akan sukar melalui kerongkongan”. Teori struktural modern molekul menyatakan bahwa

    terdapat hubungan yang sangat dekat antara struktur molekul dan fungsinya. Walaupun filosofi yang terartikulasi oleh Lucretius tidak didukung oleh bukti yang didapat dari percobaan, inilah awal kimia modern.

    Dalam periode yang panjang sejak zaman kuno sampai zaman pertengahan, teori atom tetap In heretikal (berlwanan dengan teori yang umum diterima) sebab teori empat unsur (air, tanah, udara dan api) yang diusulkan filsuf Yunani kuno Aristotole (384 BC-322 BC) menguasi. Ketika otortas Aristotle mulai menurun di awal abad modern, banyak filsuf dan ilmuwan mulai mengembangkan teori yang dipengaruhi teori atom Yunani. Gambaran materi tetap dipegang oleh filsuf Perancis Rene Descartes (1596-1650), filsuf Jerman Gottfried Wilhelm Freiherr von Leibniz (1646-1716), dan ilmuwan Inggris Sir Issac Newton (1642-1727) yang lebih kurang dipengaruhi teori atom.

b. Teori atom Dalton

    Di awal abad ke-19, teori atom sebagai filosofi materi telah dikembangkan dengan baik oleh Dalton yang mengembangkan teori atomnya berdasarkan peran atom dalam reaksi kimia. Teori atomnya dirangkumkan sebagai berikut:

    Teori atom Dalton:

    (i) partikel dasar yang menyusun unsur adalah atom. Semua atom unsur tertentu identik. (ii) massa atom yang berjenis sama akan identik tetapi berbeda dengan massa atom unsur jenis lain.

    (iii) keseluruhan atom terlibat dalam reaksi kimia. Keseluruhan atom akan membentuk senyawa. Jenis dan jumlah atom dalam senyawa tertentu tetap.

    Dasar teoritik teori Dalton terutama didasarkan pada hukum kekekalan massa dan hukum perbandingan tetap. Keduanya telah ditemukan sebelumnya, dan hukum perbandingan berganda yang dikembangkan oleh Dalton sendiri.

    Senyawa tertentu selalu mengandung perbandingan massa unsur yang sama.

    Bila dua unsur A dan B membentuk sederet senyawa, rasio massa B yang bereaksi dengan sejumlah A dapat direduksi menjadi bilangan bulat sederhana.

    Atom Democritos dapat dikatakan sebagai sejenis miniatur materi. Jadi jumlah jenis atom akan sama dengan jumlah materi. Di pihak lain, atom Dalton adalah penyusun materi, dan banyak senyawa dapat dibentuk oleh sejumlah terbatas atom. Jadi, akan terdapat sejumlah terbatas jenis atom. Teori atom Dalton mensyaratkan proses dua atau lebih atom bergabung membentuk materi. Hal ini merupakan alasan mengapa atom Dalton disebut atom kimia.

Bukti keberadaan atom

    Ketika Dalton mengusulkan teori atomnya, teorinya menarik cukup banyak perhatian. Namun, teorinya ini gagal mendapat dukungan penuh. Beberapa pendukung Dalton membuat berbagai usaha penting untuk mempersuasi yang melawan teori ini, tetapi beberapa oposisi masih tetap ada. Kimia saat itu belum cukup membuktikan keberadaan atom dengan percobaan. Jadi teori atom tetap merupakan hipotesis. Lebih lanjut, sains setelah abad ke-18 mengembangkan

    berbagai percobaan yang membuat banyak saintis menjadi skeptis pada hipotesis atom. Misalnya, kimiawan tenar seperti Sir Humphry Davy (1778-1829) dan Michael Faraday (1791-1867), keduanya dari Inggris, keduanya ragu pada teori atom.

    Sementara teori atom masih tetap hipotesis, berbagai kemajuan besar dibuta di berbagai bidang sains. Salah satunya adalah kemunculan termodinamika yang cepat di abad 19. Kimia struktural saat itu yang direpresentasikan oleh teori atom hanyalah masalah akademik dengan sedikit kemungkinan aplikasi praktis. Tetapi termodinamika yang diturunkan dari isu praktis seperti efisiensi mesin uap nampak lebih penting. Ada kontroversi yang sangat tajam antara atomis dengan yang mendukung termodinamika. Debat antara fisikawan Austria Ludwig Boltzmann (1844-1906) dan kimiawan Jerman Friedrich Wilhelm Ostwald (1853-1932) dengan fisikawan Austria Ernst Mach (1838-1916) pantas dicatat. Debat ini berakibat buruk, Boltzmann bunuh diri.

    Di awal abad 20, terdapat perubahan besar dalam minat sains. Sederet penemuan penting, termasuk keradioaktifan, menimbulkan minat pada sifat atom, dan lebih umum, sains struktural. Bahwa atom ada secara percobaan dikonfirmasi dengan percobaan kesetimbangan sedimentasi oleh Perrin.

    Botanis Inggris, Robert Brown (1773-1858) menemukan gerak takberaturan partikel koloid dan gerakan ini disebut dengan gerak Brow, untuk menghormatinya. Fisikawan Swiss Albert Einstein (1879-1955) mengembangkan teori gerak yang berdasarkan teori atom. Menurut teori ini, gerak Brown dapat diungkapkan dengan persamaan yang memuat bilangan Avogadro.

D =(RT/N).(1/6παη) (1.1)

D adalah gerakan partikel, R tetapan gas, T temperatur, N bilangan Avogadro, α jari-jari partikel

    dan η viskositas larutan.

    Inti ide Perrin adalah sebagai berikut. Partikel koloid bergerak secara random dengan gerak Brown dan secara simultan mengendap ke bawah oleh pengaruh gravitasi. Kesetimbangan sedimentasi dihasilkan oleh kesetimbangan dua gerak ini, gerak random dan sedimentasi.

    Perrin dengan teliti mengamati distribusi partikel koloid, dan dengan bantuan persamaan 1.1 dan datanya, ia mendapatkan bilangan Avogadro. Mengejutkan nilai yang didapatkannya cocok dengan bilangan Avogadro yang diperoleh dengan metoda lain yang berbeda. Kecocokan ini selanjutnya membuktikan kebenaran teori atom yang menjadi dasar teori gerak Brown.

    Tidak perlu disebutkan, Perrin tidak dapat mengamati atom secara langsung. Apa yang dapat dilakukan saintis waktu itu, termasuk Perrin, adalah menunjukkan bahwa bilangan Avogadro yang didapatkan dari sejumlah metoda yang berbeda berdasarkan teori atom identik. Dengan kata lain mereka membuktikan teori atom secara tidak langsung dengan konsistensi logis. Dalam kerangka kimia modern, metodologi seperti ini masih penting. Bahkan sampai hari ini masih tidak mungkin mengamati langsung partikel sekecil atom dengan mata telanjang atau mikroskop optic. Untuk mengamati langsung dengan sinar tampak, ukuran partikelnya harus lebih besar daripada panjang gelombang sinar tampak. Panjang gelombang sinar tampak ada dalam rentang 4,0 x 10-7- 7,0 x10-7 m, yang besarnya 1000 kali lebih besar daripada ukuran atom. Jadi jelas di luar rentang alat optis untuk mengamati atom. Dengan bantuan alat baru seperti mikroskop electron (EM) atau scanning tunneling microscope (STM), ketidakmungkinan ini dapat diatasi. Walaupun prinsip mengamati atom dengan alat ini, berbeda dengan apa yang terlibat dengan mengamati bulan atau bunga, kita dapat mengatakan bahwa kita kini dapat mengamati atom secara langsung.

2. Komponen - komponen materi

    a. Atom

    Dunia Kimia berdasarkan teori atom, satuan terkecil materi adalah atom. Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsure yang tidak akan mengalami perubahan dalam reaksi Kimia. Semua atom terdiri atas komponen yang sama, sebuah inti dan electron. Diameter inti sekitar 1015-1014 m, yakni sekitar 1/10 000 besarnya atom. Lebih dari 99 % massa atom terkonsentrasi di inti. Inti terdiri atas proton dan neutron, dan jumlahnya menentukan sifat unsur.

Massa proton sekitar 1,67 x 1027 kg dan memiliki muatan positif, 1,60 x 1019 C (Coulomb).

    Muatan ini adalah satuan muatan listrik terkecil dan disebut muatan listrik elementer. Inti memiliki muatan listrik positif yang jumlahnya bergantung pada jumlah proton yang dikandungnya. Massa neutron hampir sama dengan massa proton, tetapi neutron tidak memiliki muatan listrik. Elektron adalah partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom secara listrik bermuatan netral. Sifat partikel-partikel yang menyusun atom dirangkumkan di Tabel 1.1.

Tabel 1.1 Sifat partikel penyusun atom.

     massa (kg) massa relative muatan listrik (C) Proton 1,672623×10-27 1836 1,602189×10-19

    neutron 1,674929×10-27 1839 0

    elektron 9,109390×10-31 1 -1,602189×10-19

    Jumlah proton dalam inti disebut nomor atom dan jumah proton dan neutron disebut nomor massa. Karena massa proton dan neutron hampir sama dan massa elektron dapat diabaikan dibandingkan massa neutron dan proton, massa suatu atom hampir sama dengan nomor massanya.

    Bila nomor atom dan nomor massa suatu atom tertentu dinyatakan, nomor atom ditambahkan di kiri bawah symbol atom sebagai subscript, dan nomor massa di kiri atas sebagai superscript. Misalnya untuk atom karbon dinyatakan sebagai 126 C karena nomor atom adalah 6 dan nomor massanya adalah 12. Kadang hanya nomor massanya yang dituliskan, jadi sebagai 12C. Jumlah proton dan elektron yang dimiliki oleh unsure menentukan sifat Kimia unsure. Jumlah neutron mungkin bervariasi. Suatu unsure tertentu akan selalu memiliki nomor atom yang sama tetapi mungkin memiliki jumlah neutron yang berbeda-beda. Varian-varian ini disebut isotop. Sebagai contoh hydrogen memiliki isotop yang dituliskan di tabel berikut.

Tabel 1.2 Isotop-isotop hidrogen

    simbol dan nama jumlah proton Jumlah neutron

    1H hidrogen 1 0

    2H deuterium, D 1

    1 3H tritium, T 1 2

    Banyak unsur yang ada alami di alam memiliki isotop-isotop. Beberapa memiliki lebih dari dua isotop. Sifat kimia isotop sangat mirip, hanya nomor massanya yang berbeda.

b. Molekul

    Komponen independen netral terkecil materi disebut molekul. Molekul monoatomik terdiri datu atom (misalnya, Ne). Molekul poliatomik terdiri lebih banyak atom (misalnya, CO2). Jenis ikatan antar atom dalam molekul poliatomik disebut ikatan kovalen (lihat bab 3.2(b)). Salah satu alasan mengapa mengapa diperlukan waktu yang lama sampai teori atom diterima dengan penuh adalah sebagai berikut. Dalam teorinya Dalton menerima keberadaan molekul (dalam terminologi modern) yang dibentuk oleh kombinasi atom yang berbeda-beda, tetapi ia tidak tidak menerima ide molekul diatomik untuk unsur seperti oksigen, hidrogen atau nitrogen yang telah diteliti dengan intensif waktu itu. Dalton percaya pada apa yang disebut “prinsip tersederhana”4 dan berdasarkan prinsip ini, ia secara otomatis mengasumsikan bahwa unsur

    seperti hidrogen dan oksigen adalah monoatomik.

    Kimiawan Perancis Joseph Louis Gay-Lussac (1778-1850) mengusulkan hukum reaksi gas yang menyatakan bahwa dalam reaksi gas, perbandingan volume adalah bilangan bulat. Teori atom Dalton tidak memberikan rasional hukum ini. Di tahun 1811, kimiawan Italia Amedeo Avogadro (1776-1856) mengusulkan unsur gas seperti hidrogen dan oksigen yang bukan monoatomik tetapi diatomik. Lebih lanjut, ia juga mengusulkan bahwa pada temperatur dan tekanan tetap, semua gas dalam volume tertentu mengandung jumlah partikel yang sama. Hipotesis ini awalnya disebut hipotesis Avogadro, tetapi kemudian disebut hukum Avogadro.

    Hukum Avogadro memberikan dasar penentuan massa atom relatif, yakni massa atom (secara nal disebut berat atom). Pentingnya massa atom ini lambat disadari. Kimiawan Italia Stanislao Cannizzaro (1826-1910) menyadari pentingnya hipotesis Avogadro dan validitasnya di International Chemical Congress yang diselenggarakan di Karlsruhe, Germany, di tahun 1860, yang diadakan utuk mendiskusikan kesepakatan internasional untuk standar massa atom. Sejak itu, validitas hipotesis Avogadro secara perlahan diterima.

c. Ion

    Atom atau kelompok atom yang memiliki muatan listrik disebut ion. Kation adalah ion yang memiliki muatan positif, anion memiliki muatan negatif. Tarikan listrik akan timbul antara kation dan anion. Dalam kristal natrium khlorida (NaCl), ion natrium (Na+) dan ion khlorida (Cl?) diikat dengan tarikan listrik. Jenis ikatan ini disebut ikatan ion.

3. Stoikiometri

    a. Tahap awal stoikiometri

    Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.

    Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”.

    Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.

    Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang

    terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya.

    Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.

    Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.

    Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.

b. Massa atom relatif dan massa atom

    Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.

    Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi. Soal Latihan 1.1 Perubahan massa atom disebabkan perubahan standar. Hitung massa atom hidrogen dan karbon menurut standar Berzelius (O = 100). Jawablah dengan menggunakan satu tempat desimal.

    Jawab.

    Massa atom hidrogen = 1 x (100/16) = 6,25 (6,3), massa atom karbon = 12 x (100/16)=75,0 Massa atom hampir semua unsur sangat dekat dengan bilangan bulat, yakni kelipatan bulat massa atom hidrogen. Hal ini merupakan kosekuensi alami fakta bahwa massa atom hidrogen sama dengan massa proton, yang selanjutnya hampir sama dengan massa neutron, dan massa elektron sangat kecil hingga dapat diabaikan. Namun, sebagian besar unsur yang ada secara alami adalah campuran beberapa isotop, dan massa atom bergantung pada distribusi isotop. Misalnya, massa atom hidrogen dan oksigen adalah 1,00704 dan 15,9994. Massa atom oksigen sangat dekat dengan nilai 16 agak sedikit lebih kecil.

    Contoh Soal 1.2 Perhitungan massa atom. Hitung massa atom magnesium dengan menggunakan distribsui isotop berikut: 24Mg: 78,70%; 25Mg: 10,13%, 26Mg: 11,17%. Jawab:

    0,7870 x 24 + 0,1013 x 25 +0,1117 x 26 = 18,89+2,533+2,904 = 24,327(amu; lihat bab 1.3(e)) Massa atom Mg = 18,89 + 2,533 + 2,904 =24.327 (amu).

Report this document

For any questions or suggestions please email
cust-service@docsford.com