DOC

References Continental drift, climate change and distribution of

By Amanda Nichols,2014-04-08 21:15
8 views 0
References Continental drift, climate change and distribution of

     Tropical Ecology Spring 10 climate & geological history 1

    Geology and history of tropical biota

I. Generalization:

    1. Animals move more than land moves (Darlington 1957, "Zoogeography")

    2. Sahara has vast petrified logs and major (dry) river drainage systems indicating

    much rain and lush forest in the past. Did climates change or did land move?

    3. The tropical regions share few mammal families but many plant families.

    II. Factors that have determine the present day distribution of organisms

    1. Habitat today: physical setting - climate, soil

    biotic setting - vegetation type, food availability, mutualistic

    relationships.

    1. History: antiquity - the place of origin.

     availability of dispersal routes (barriers, land bridges, water ways)

     climate change

     island effects (extinction)

III. Continental drift.

    2. Wegener (1915) - matching shape of S. America and Africa.

    3. Continent, epicontinental seas, continental shelf vs. deep ocean.

    4. Earth's crust (= 70 km thick lithosphere) in which continents (ca. 25 km thick,

    made of granite rocks) and ocean floor (5-8 km thick made of heavy gabrro and

    basalt) sliding on the top of 70-250 km thick asthnosphere (1-10 % partially

    molten dense rock).

    5. Major land masses -- time course of their movement.

    6. Type of changes - latitudinal, separations, later reunions.

    Collision of continents: e.g., India.

    Temporal land bridges due to lowering sea level during cold climates

    Stepping stones: Antilles archipelago (80 my BP-)

IV. Geographical distribution of taxa.

    1. Global distribution of plants and animal families.

    2. Convergence and divergence between continents.

    3. Wallace's line and biogeography of S. E. Asia.

    4. Central American land bridge and the Great American Faunal Exchange.

     Tropical Ecology Spring 10 climate & geological history 2

    A. Analysis of megathermal plant species.

    Much insight comes from analysis of geological and fossil evidence, including microfossils. Morley (2000) analyzed the unpublished oil company stratigraphical analysis of fossil pollens, reconstructed waxing and waning of tropical forests, driven by the series of climatic pulsations.

    Megathermal plant communities originally developed in three parallel belts separated by the subtropical high-pressure zones.

     Northern belt: mid-altitude of N. America and Europe (Bombaceae)

     Equatorial (Palms)

     Southern Belt: southern South America and eastern Gondwana (Proteaceae)

    Megathermal pantropical plant families (Morley 2000, adopted from van Steenis 1957)

Annonaceae Dichapetalaceae Hippocrataceae Opiliaceae

    Bombacaceae Dilleniaceae Lecythidaceae Pandanaceae

    Burseraceae Dipterocarpaceae Malphigiaceae Rhizophoraceae

    Cannaceae Erythroxylaceae Marantaceae Taccaceae

    Cochlospermaceae Flagellariaceae Musaceae Tiuridaceae

    Combretaceae Guttifarae Myristicaceae Zingiberaceae

    Connaraceae Hernandiaceae Ochnaceae

    B. Geological periods (numbers in millions of years ago, or Ma) ---------------------------------------------------------------------------------------------------------

    Cenozoic Quaternary (3 - 0) Holocene post-glacier (11,000 BP-)

     Pleistocene (3-0.5) early man. frequent glaciers

     Tertiary (65 - ) Pliocene (13 - ) large carnivores

     Miocene (25 - ) 1st common grazers

     Oligocene (36 - ) large running mammals

     Eocene (54 - ) many modern mammals

     Paleocene (65 - ) 1st placental mammals

Mesozoic Cretaceous (135- )

     Jurassic (180 - ) 1st birds & mammals

     Triassic (230 -) 1st dinosaurs

Paleozoic Permian (280 - ) mass extinction

     Carboniferous (310 - ) great coal forest, 1st reptiles

     Devonian (395 -) first amphibians

     Silurian (440 - ) first land plants

     Ordovician (500 - ) earliest known fish

     Cambrian (600 - ) marine invertebrates

     Precambrian (3500 or more) first fossils

    --------------------------------------------------------------------------------------------------------

     Tropical Ecology Spring 10 climate & geological history 3

    C. Major geological events that shaped tropical biota

    245 Ma -- end of Permian (mass extinction - maybe as many as 99 % of all species) 200 Ma -- Pangea began to split--- dinosaurs evolved and speciated through 200-65 my

    BP.

    135 Ma -- Beginning of Crataceous. 2 super continents, Laurasia and Gondwana --

    evolution of flowering plants since. Diversification of Angiosperm estabalished

    110-90 Ma (but no tall & closed tropical forests with large mammal dispersed

    seeds).

    100 Ma -- South America split from Africa

    65 Ma K-T mass extinction, marking the Cretaceous and dinosaur era. Beginning of the

    adaptive radiation of mammals, large-seeded angiosperms and tall forest. ca. 50 Ma early Ecocene thermal maximum tropical rain forests as wide spread as far

    as near 60? N and S.

    36 Ma the terminal Ecocene cooling contraction of tropical forests, disappearance of

    Northern and Southern belts of tropical forests.

    16-10 Ma middle Miocene warming and brief expansion of tropical rain forests. Pliocene (5 Ma 1.6 Ma) ; low atmospheric CO prompted evolution of C grasses. 24

    Cooler and drier climate expand.

    6-3 Ma Formation of Central American land bridge

    ; Great American Faunal Interchange (GAFI).

    3 Ma 11,000 BP cooling and repeated glacial episodes. Further contraction of

    tropical forests due to cooling (Collinvaux et al. 1996), as well as savanna

    expansion? (c.f., movement of Savanna animals during the Great American

    Interchange, Webb 1996). Particularly severe reduction of tropical forests and

    extinction of rain forest species in Africa.

    11,000 yrs BP to current (Holocene) Re-expansion of tropical rain forest. Wide-spread

    deforestation by humans. Increased fire incidences?

    D. Summary of the Great American Faunal Interchange (Terborgh 1992)

     N. America S. America

    Number of mammal families (genera) before GAFI 30 (131) 35 (72)

    Number of genera right after GAFI (101) (100)

    Number of mammal families (genera) NOW. 33 (141) 35 (170)

    Percentage of original families 64 % 60 %

    Bottom line: Continental drifts do not explain distributions at all taxonomic levels (e.g., Simphonia blogulifera managed to disperse between S. Am and W. Af in mid-Mocene). Nevertheless, it explains sharing of Angiosperm families between continents and many disjunct and odd distributions of taxa (e.g., Nothofagus between Australia and Chile).

     Tropical Ecology Spring 10 climate & geological history 4

    References for Continental drift, climate change and distribution of organisms.

    Darlington, 1957. Zoogeography: the geographical distribution of animals. Harvard

    University Press, Cambridge, Mass.

    Dick, C. W., E. Bermingham, M. R. Lemes, and R. Gribel. 2007. Extreme long-distance

    dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in

    Africa and the Neotropics. Molecular Ecology 16:3039-3049.

    Dick, C. W., and M. Heuertz. 2008. The Complex Biogeographic History of a

    Widespread Tropical Tree Species. Evolution 62:2760-2774.

    Flenley, J. R., 1979. The equatorial rain forest: a geological history. Butterworths,

    London.

    Head, J. J., J. I. Bloch, A. K. Hastings, J. R. Bourque, E. A. Cadena, F. A. Herrera, P. D.

    Polly, and C. A. Jaramillo. 2009. Giant boid snake from the Palaeocene

    neotropics reveals hotter past equatorial temperatures. Nature 457:715-U714.

    Jaramillo, C., M. Rueda, and G. Mora. 2006. Cenozoic plant diversity in the Neotropics.

    Science 311:1893-1896.

    Mejia, P., D. Dilcher, and C. Jaramillo. 2006. Early angiosperm evolution in tropical

    latitudes. Palynology 30:222-222.

    Morley, R. J. 2000. Origin and evolution of tropical rain forests. Chichester, Wiley.

    Ohsawa M. 1990. An interpretation of latitudinal patterns of forest limits in South and

    East Asian mountains. Journal of Ecology 78: 326-339.

    Raven, P. H. and Axelrod, D. I. 1974. Angiosperm biogeography and past continental

    movements. Annals of the Missouri Botanical Garden 61: 539-61, 637-57. Richards, P. W. 1978. Africa, the “odd man out”. Pg. 21-26. In: Meggers, B. and Ayensu,

    E. S., an Duckworth, W. D. (eds.) Tropical Forest Ecosystems in Africa and

    South America. Smithsonian Institution Press, Washington.

    Rich, P. V. and Rich, T. H. 1983. The Central American dispersal route: biotic history

    and paleogeography. Pg. 12-34. In: Janzen, D. H. (ed) Cost Rican Natural

    History. University of Chicago, Chicago.

    Terborgh, J. 1992. Diversity and the Tropical Rain Forest. Scientific American Library,

    New York.

    Webb, S. D. and Rancy, A. 1996. Late Cenozoic evolution of the Neotropical mammal

    fauna. Pg. 335-358. In: Jackson, J. B. C., Budd, A. F. and Coates, A. G. (eds.)

    Evolution and environment in tropical America. University of Chicago, Chicago. nd ed. Oxford University Whitmore, T. C. 1998. An introduction to tropical rain forests, 2

    Press, Oxford.

    Whitmore, T. C. 2002. What shaped tropical biotas as we see today. Pg. 69-73. In:

    Chszdon, R. L. and Whitmore, T. C. (eds.) Foundation of Tropical Forest Biology.

    University of Chicago, Chicago.

    Wolfe JA. 1978. A paleobotanical interpretation of tertiary climates in the northern

    hemisphere. American Scientist 66: 695-703.

    Wolfe JA and Upchurch GR. 1986. Vegetation, climatic and floral changes at the

    Cretaceous-Tertiary boundary. Nature 324: 148-152.

Report this document

For any questions or suggestions please email
cust-service@docsford.com