TXT

3G technology overview

By Joanne Holmes,2014-05-27 15:04
13 views 0
3G technology overview

     本文由loveniko贡献

     pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT(或下载源文件到本机查看。

     3G Technology Overview

     Agenda

     3G Technology Evolution TD-SCDMA Overview 3GPP WCDMA/HSPA Overview 3GPP2

    CDMA2000/1xEVDO Overview

     Blair Lee

     Page 2

     Latest Wireless Standard Progress

     2G IS-95A cdma GSM IS-136 TDMA PDC 802.11b 802.11a 2.5G IS-95B cdma HSCSD GPRS

    iMode 802.11g E-GPRS EDGE W-CDMA FDD W-CDMA TDD TD-SCDMA LCR-TDD 802.11h 802.11n

    1xEV-DO 3.5G Release 0 1xEV-DO Release A 1xEV-DO Release B HSDPA FDD & TDD HSUPA FDD

    & TDD 802.16d Fixed WiMAXTM WiBRO

     3G

     IS-95C cdma2000

     3.9G cf 802.20

     UMB

     LTE E-UTRA

     EDGE Evolution

     HSPA+

     802.16e

     Mobile WiMAXTM

     Blair Lee

     Page 3

     Technology Convergence is Trend of Phone Design

     WiNet Bluetooth/WLAN

     Digital TV

     Cellular Mobile Communication

     Blair Lee

     Page 4

     Test and Measurement Challenge for New Technologies

     频率范围: 频率范围: 从射频扩展到微波 测量(分析)带宽: 测量(分析)带宽: GSM

    WiMax需要扩展100 动态范围: 动态范围: TD-SCDMA的功率时间测量需要120dB动态

    范围 多制式测量: 多制式测量: 多制式测量平台 快速升级到最新制式 调制域分析的复杂

    : 调制域分析的复杂性: 波形质量,矢量误差及其各种表现形式 数字基带和协议分析:

    字基带和协议分析: 对数字基带进行系统级测试 模拟真实网络的协议功能测试

    (MMS,FFT,Video Call)

     Blair Lee

     Page 5

     3GPP Specifications Releases

     GSM Phase I Doc. Version 3.X.Y Original GSM GSM Phase II Doc. Version 4.X.Y DCS1800 Release 96 HSCSD Release 97 GPRS Release 98 EDGE Release 7 HSPA+ Doc. Version 7.X.Y Doc. Version 6.X.Y Doc. Version 5.X.Y Release 5 Doc. Version 5.X.Y High Speed Downlink Packet Access (HSDPA) Release 6 Doc. Version 6.X.Y

    Release 99 Doc. Version 3.X.Y W-CDMA (FDD and wideband TDD) Release 4 Doc. Version 4.X.Y

     Narrowband TDD (Low Chip Rate TD-SCDMA)

     High Speed Uplink Packet Access (HSUPA)

     Blair Lee

     Page 6

     Agenda

     3G Technology Evolution TD-SCDMA Overview 3GPP WCDMA/HSPA Overview 3GPP2

    CDMA2000/1xEVDO Overview

     Blair Lee

     Page 7

     China Spectrum allocation

     TDD FDD (uplink) 60 MHz Satellite TDD 30 MHz 1980 15 MHz Void 85 MHz FDD (downlink)

    60 MHz

     40 MHz

     1880

     1920

     2010 2025 TDD

     2110

     2170

     Duplex Spacing 190 MHz

     40 MHz

     2300 Air interface TD-SCDMA W-CDMA Mode TDD FDD Frequency Band 40 + 15 + 100 MHz

    60 MHz

     2400 RF Bandwidth 1.6 MHz 5 MHz Availability 155MHz From 2003 on

     Blair Lee

     Page 8

     Advantages of TDD

     Flexible in spectrum: Requires unpaired frequency bands only

     It is difficult to find paired frequency bands under 2GHz

     Same frequency for uplink and downlink: Smart antenna can be used Support

    asymmetric service Low cost for Node B

     Lower power PA with smart antenna

     High spectrum efficiency leveraged by Smart Antenna, JD and TDD

     Blair Lee

     Page 9

     TD-SCDMA Technology Resource structure

     1.6Mhz per carrier

     7 timeslots per frame 16 codes per timeslot

     Blair Lee

     Page 10

     TD-SCDMA Technology Frame structure

     2 subframes

     6400 chips

     7 slots + 3 special slots

     864 chips

     Structure on each code

     TD-SCDMA Frame Structure

     SP: Switching point

     Blair Lee

     Page 11

     TD-SCDMA Technology Channels

     Transport channels

     Transport channels are the services offered by layer 1 to the higher layers. A transport channel is defined by how and with what characteristics data is transferred over the air interface. A general classification of transport channels is into two groups: Dedicated Channels, using inherent addressing of UE Common Channels,

    using explicit addressing of UE if addressing is needed

     Physical channels

     Physical Channels have a three Layer Structure: Timeslot: 675 usec slot

    consisting of a number of Symbols Radio frame: 5 ms frame consisting of 7 timeslots System frame numbering Time slots are used in the sense of a TDMA component to separate different user signals in time and code domain. Code domain: OVSF code

    with a spreading factor of 1, 2, 4, 8, or 16.

     Blair Lee Page 12

     Physical layer functionality

     CRC attachment Transport block concatenation

     Error detection on transport channels and indication to higher layers Forward Error Control, Rate matching, Multiplexing of transport channels and demultiplexing of coded composite transport channels (CCTrCH) Mapping of CCTrCH on physical channels Spreading and despreading, Modulation and demodulation

     Code block segmentation

     „„

     Channel coding, Radio frame equalisation, 1st interleaving

     Radio frame segmentation Rate matching

     „„

     Transport channel (TrCH) multiplexing

     Radio characteristics measurements Power control, Frequency and time synchronization Beamforming, Diversity distribution/combining

     Subframe segmentation Physical channel mapping Physical channel segmentation 2nd interleaving

     „„

     „„ „„

     Page 13

     PhCH1

     Blair Lee

     TD-SCDMA HSDPA

     3GPP R5 character Key technology and spec

     HS-DSCH AMC (16QAM & QPSK) HARQ Fast scheduling 5ms TTI, at most

    5 downlink slots used in one carrier Theoretical peak data rate 2.8Mbps @1.6MHz

     Blair Lee

     Page 14

     Key techniques of TD-SCDMA

     ??(..)

     1 2 3 4 5 6

     Smart Antenna Joint Detection Uplink Synchronization: Baton handoff Dynamic channel assignment „„

     Blair Lee

     Page 15

     Agenda

     3G Technology Evolution TD-SCDMA Overview 3GPP WCDMA/HSPA Overview 3GPP2 CDMA2000/1xEVDO Overview

     Blair Lee

     Page 16

     Benefits of 3GPP WCDMA

     Higher Capacity - about 2X IS-95, 7X GSM Ability to Send up to 384 kbps High Speed Data while Moving (Internet, video, multimedia, etc.) Up to 2 Mbps Throughput for Fixed Applications 5 MHz Bandwidth is more Immune to Fading No Accurate Base Station Synchronization Needed Support for Hand-off To and From GSM

     Blair Lee

     Page 17

     3GPP Frame Structure

     Physical Channels Have a Three Layer Structure:

     Super frame: 720 ms consisting of 72 frames Radio frame: 10 ms frame

    consisting of 15 timeslots Timeslot: 0.667 usec slot consisting of a number of Symbols (2560chip/slot)

     Symbols are Defined as:

     One Symbol Consists of a Number of Chips . The Number of Chips per Coded

    Symbol is Equal to the Spread Factor of the Physical Channel Chip is a Bit at the

    Final Spreading Rate of 3.84 Mchips/s

     Blair Lee

     Page 18

     Downlink Physical Channels

     CPICH (Common Pilot Channel). P-CCPCH (Primary Common Control Physical Channel). S-CCPCH (Secondary Common Control Physical Chan). SCH (Synchronization Channel). DPCH (Dedicated Physical Channel). PDSCH (Physical Downlink Shared Channel). AICH (Acquisition Indication Channel). PICH (Page Indication Channel).

     Blair Lee

     Page 19

     Downlink DPCH Coding

     20 ms Frames

     244 bits DTCH Data Bits 96 bits DCCH Data Bits 268 bits Add CRC & Tail Bits 120

bits Add CRC & Tail Bits 804 bits 1/3 Rate Conv. Coder 360 bits 1/3 Rate Conv. Coder

    688 bits Rate Matching 304 bits Rate Matching 688 bits 1st Interleaver 304 bits Segment

    1st & Match Interleaver

     10 ms Frames

     344 bits 34.4 kbps Frame Segment TrCH Mux 76 bits Frame Segment

     7.6 kbps

     CCTrCH

     2nd Interleaver

     42 kbps

     40 ms Frames

     DPDCH

     42 kbps

     Spreading I

     30 ksps

     Iscramble

     3840 kcps + -

     Pilot, Power Control and TFCI

     SF=128 S -P OVSF Code Gen

     3840 kcps

     10 ms segment 218 Complex Scramble Code Generator Complex Scrambling

     I

     DPCCH

     18 kbps 60 kbps

     Time Multiplexer

     Qscramble

     + +

     Q

     Q 30 ksps

     3840 kcps

     Iscramble

     Blair Lee

     Page 20

     Effects of Variable OVSF Codes

     Using Shorter OVSF Codes Precludes Using all Longer Codes Derived from the Original Shorter Codes on a Branch map into Longer Codes

     1 1 -1 1 -1

     SF=2 SF=4

     1 1 1 1

     SF=8

     1 1 1 1 1 1 1 1

     SF=16

     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

    1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1

    1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

     1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

     1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

     1 -1 1 -1 -1 1

     Blair Lee

     Page 21

     Uplink Data Channel Air Interface

     20 ms Frames

     244 bits DTCH Data Bits 96 bits DCCH Data Bits 268 bits Add CRC & Tail Bits 120 bits Add CRC & Tail Bits 804 bits 1/3 Rate Conv. Coder 360 bits 1/3 Rate Conv. Coder 804 bits 1st Interleaver 360 bits 1st Interleaver

     10 ms Frames

     402 bits Frame Segment 90 bits Segment & Match 490 bits 49 kbps Rate Matching TrCH Mux 110 bits Rate Matching

     11 kbps

     CCTrCH

     2nd 60 kbps Interleaver

     60 kbps

     40 ms Frames 60 kbps

     DPDCH Data Bits

     3840 kcps

     I

     SF=64 Gain

     3840 kcps

     I Scramble Code

     1,-1

     +

     I

     OVSF 2 Generator

     Q

     Complex Scrambling

     -

     Cch,64,16 Cch,256,0

     Data OVSF Generator Control OVSF Generator SF=256

     225 Scramble Code Generator

     Deci by 2

     DPCCH Data Bits

     3840 kcps 15 kbps

     Q 3840 kcps

     Q

     + +

     Pilot, Power Control, &TFCI

     Q

     I Scramble Code

     Gain = - 6 dB

     Blair Lee

     Page 22

     HPSK Technology in 3G

     Idea is to Reduce the Peak to Average Ratio of the Signal Key is to Decimate the Q Code by 2, followed by XOR with the Walsh Code 1, -1 Reduces the Probability of Zero Transitions and Symbol Repeats from 1/4 to 1/8

     I

     I

     Walsh 2 Generator

     1,-1

     Long Code Generator

     Q'

     1-Chip Delay

     Q Decimate by 2

     Blair Lee

     Page 23

     What is HSDPA?

     HSDPA : High Speed Downlink Packet Access Increases downlink data rates (>10 Mbps) Improves spectral efficiency for downlink packet data services Employs both Time Domain Multiplexing (TDM) and Code Domain Multiplexing (CDM) Reduces transmission latency Supports multimedia services (packet based): web browsing, movie streaming, interactive games, car-navigation system update, etc HSDPA User Equipment (UE) and Release 99 UE can share the same carrier

     Blair Lee

     Page 24

     What's New for HSDPA Technology?

     Shorter Radio Frame Downlink Channels 16 QAM Modulation Type UEs Share Code Space by Time Multiplexing New Uplink Channel Code Channels (CQI, ACK) Adaptive Modulation and Coding (AMC) Hybrid ARQ (HARQ) MAC Scheduling Functionality Moved to Node-B Test Model 5 and Fixed Measurement Channels

     Blair Lee

     Page 25

     16QAM for HS-PDSCH

     I downlink physical channel

     i1 i2 q2

     Sdl,n I+jQ S

     1010 1011 1001

     1.3416

     i2

     0001 0011

     S ? P

     Modulation Mapper

     Cch,SF,m Q

     1000

     0.4472

     0000

     0.4472

     0010

     1.3416

     1110

     1100

     0100

     0110

     j

     q1

     1111 1101 0101 0111

     q2

     Left : 240ksps 16QAM Right : 240ksps QPSK

     Ref : 25.213 5.1

     Blair Lee

     Page 26

     Downlink Code Domain/Time Domain Multiplexing

     Shared packet channel Time Dedicated channel OVSF codes

     Page 27 Blair Lee

     UE Capability Classes

     HS-DSCH category (FDD) Maximum number of HSDSCH codes received 5 5 5 5 5 5 10 10 15 15 5 5 Minimum inter-TTI interval 3 3 2 2 1 1 1 1 1 1 2 1 Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI 7298 7298 7298 7298

    7298 7298 14411 14411 20251 27952 3630 3630 Total number of soft channel bits 19200 28800 28800 38400 57600 67200 115200 134400 172800 172800 14400 28800

     Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Category 7 Category 8 Category 9 Category 10 Category 11 Category 12

     UEs of Categories 11 and 12 support QPSK only.

     Ref : 25.306 4.5.3 and table 5.1a

     Blair Lee Page 28

     Objectives of HSUPA

     3GPP's high level objectives for HSUPA:

     "The technical objective of the FDD Enhanced Uplink work item is to improve the performance of uplink dedicated transport channels, i.e. to increase capacity and throughput and reduce delay."

     To many, HSUPA = higher data rates HSUPA has other benefits

     Increased network capacity with the ability to quickly change data rate

Reduced delays to improve the performance of applications

     Blair Lee

     Page 29

     HSUPA Channels in Action

     Packet Reordering RNC Serving Cell

     Node B

     Abso lute G Rela rant tive Gran t (Up HAR /Hol Q AC d/Do E-DP K/NA wn) D CH CK , E-D PCC H

     n) old/Dow ant (Up/H Gr Relative CK ACK/NA HARQ CH -DPC CH, E D E-DP

     Serving E-DCH RLS

     Relati ve Gr ant (H old/Do wn) HARQ ACK/N ACK E-DPD CH, E-D PCCH

     Node B

     Non-serving E-DCH RLS

     The absolute grant channel is only sent by the serving cell. Relative Grants and ACK/NACKs from the same Radio Link Set (RLS) are the same will be soft combined

    by the UE. E-DCHs (carried on E-DPDCH) will be soft-combined at Node B. Non-Serving RLS Cells cannot increase data rate only hold or decrease it.

     Blair Lee Page 30

     Theoretical HSUPA Data Rates

     The theoretical maximum throughput on the uplink is 5.76 Mbps Initial plans for all announced HSUPA devices and chipsets target 2 Mbps theoretical maximum throughput

     Number of E-DPDCH Channels x Spreading Factor (SF) Effective Coding Rate 1/2 3/4 4/4 1 x SF4 480 kbps 720 kbps 960 kbps 2 x SF4 960 kbps 1440 kbps 1920 kbps 2 x SF2 1920 kbps 2880 kbps 3840 kbps 2 x SF4 2 x SF2 2880 kbps 4320 kbps 5760 kbps

     Blair Lee

     Page 31

     Agenda

     3G Technology Evolution TD-SCDMA Overview 3GPP WCDMA/HSPA Overview 3GPP2 CDMA2000/1xEVDO Overview

     Blair Lee

     Page 32

     Benefits of IS-2000 CDMA

     Improved Performance and Capacity:

     About 2X Voice Capacity of TIA/EIA-95-B Handles a Wide Range of Data Rates:

    Voice and Low SpeedData while Driving Up to 384 kbps Packet or Circuit Data while Moving Up to 2 Mbps Data Rates for Fixed Installations

     Meets All IMT-2000 Requirements Easy Upgrade for Service Providers Who Currently Operate TIA/EIA-95 Systems

     Blair Lee

     Page 33

     Performance Enhancements

     Reverse Link Pilot for Each Mobile True QPSK Modulation Continuous Reverse Link Waveform Improved Convolutional Encoding for 14.4 kbps Voice Channels Fast Forward & Reverse Link Power Control Supports Auxiliary Pilots for Beam Forming Forward Link

Transmit Diversity - OTD, STS, MultiAntenna

     cdma 2000

     Blair Lee

     Page 34

     SR1, RC4 (152.4 kbps) F-SCH

     Payload Data Bits Channel Convolutional Coder Encoder

     153.6 kbps

     Complex Scrambling Orthogonal Spreading

     1228.8 kcps

     152.4 kbps

     1/2 Rate Add CRC and Tail Bits

     307.2 ksps

     + I Short Code

     1228.8 kcps

     I

     FIR

     I

     Interleaver

     307.2 ksps 153.6 ksps

     1228.8 kcps

     I

     307.2 ksps 1228.8kbps

     User Long Code Mask

     Gain

     S -P

     Walsh 8 Generator

     1228.8 kbps

     1228.8 kbps

     307.2 ksps

     Long Code Generator

     Long Code Decimator

     Decimate by Walsh Length/2

     Q

     153.6 ksps

     +

     Q

     1228.8 kcps

     Q

     1228.8 kcps

     Q Short Code + 1228.8 kcps

     FIR

     Blair Lee

     Page 35

     1xEV-DO Benefits

Report this document

For any questions or suggestions please email
cust-service@docsford.com