TXT

Polarization and Optics

By Donna Arnold,2014-05-27 14:58
13 views 0
Polarization and Optics

     ??ÎÄÓÉzhwang7101??Ï×

    pptÎĵµ?ÉÄÜÔÚWAP?Ëä?ÀÀÌåÑé???Ñ????ÒéÄúÓÅÏÈÑ?ÔñTXT???òÏÂÔØÔ?ÎÄ?þµ????ú?é????

     Polarization and Polarizing Optics

     WE804 Notes Module 16

     Materials from BEA Saleh, MC Teich Fundamentals of Photonics John Wiley & Sons, NY (1991)

     Polarization of Light

     Refers to time variation of the direction of the Efield vector ? Our specialized case: monochromatic optical beams (paraxial waves)

     ? ? z ?? ? E (z, t ) = Re ?A exp ? j 2?Ð?Í ? t ? ?? ? ? c ?? ? ? ? ? ? A = Ax x + Ay y where Ax Ay are complex components Trace endpoint of E ( z, t ) at each z with time

     Polarization Ellipse

     Express complex Ax Ay as magnitude/phase

     Ax = a x e

     j? x

     Ay = a y e

     j? y

     ? E (z, t ) =Ex x +Ey y

     where

     Important! The phase of the complex coefficient adds to the phase of the propagating sinusoid!

     ? ? z? Ex = a x cos ? j 2?Ð?Í ? t ? ? + ? x ? ? c? ? ?

     ? ? z? Ey = a y cos ? j 2?Ð?Í ? t ? ? + ? y ? ? c? ? ? are the x and y components of the field and also are parametric equations of an ellipse ExEy Ex + 2 ? 2 cos ? = sin 2 ? 2 ax a y ax a y

     2

     Ey 2

     = ? y ??x

     Elliptical Trajectories

     At fixed z, the tip of the E-field vector rotates periodically in X-Y plane, tracing an ellipse ? At fixed t, the tip of the E-field vector traces a helical path on the surface of an elliptical cylinder and ?Ë=c/?Í ? State of polarization depends on shape of ellipse, which depends on ay/ax and ?Õ= ?Õy? ?Õx ? Size of ellipse depends on I = (ax2+ay2)/?Ç where ?Ç is impedance

     Polarization Ellipse

     Linear Polarization

     Examples : ax = 0 ? E (z, t) =Ey y

     = 0, ?Ð (+ / ? below)

     Ey = ?À (a y a x ) x E

     Circular Polarization

     If ? = ? y ? ? x = ?À?Ð / 2 and a x = a y = a0 ? ? ? z? Ex = a0 cos ?2?Ð?Í ? t ? ? + ? x ? ? c? ? ? ? ? ? z? Ey = m a0 sin ?2?Ð?Í ? t ? ? + ? x ? ? c? ? ?

     2 Ex 2 +Ey 2 = a0 Circle

     = +?Ð / 2 right polarized (clockwise from front) ? = ??Ð / 2 left polarized (counterclockwise from front)

     Circular Polarization

     A x ? J=? ? ?A y ? Given J, can find I = Ax + Ay

     2

     Jones Matrix

     (

     2

     ) 2?Ç ,

     a y ax = A y A x and ? = ? y ? ? x = Arg {Ay }? Arg {Ax }

     Notes for figure Ax + Ay = 1

     2 2

     x = 0

     Orthogonal Polarizations and Decomposition

     (J

     J 1 , J 2 are orthogonal J 1 ?Í J 2 if inner product is zero

     * * , J 2 ) = A1x A2 x + A1 y A2 y = 0 1

     where A1x , A1 y are components of J 1 , * is complex conjugate, etc

     Examples ?Linearly polarized waves in x and y directions ?Right- and left-circularly polarized waves ?Orthogonal Jones vectors J1, J2 can be used as a basis set, arbitrary Jones vectors can be expressed as the sum of their projections onto this set

     ?Á1 = (J , J 1 ), ?Á 2 = (J, J 2 )

     J = ?Á 1J 1 + ?Á 2 J 2

     Matrix Representation of Polarization Optics

     Using Jones vectors, the affect of polarizing optics is naturally expressed in matrix form ? x,y axes are defined by the device

     ?C input vector J1 should be expressed in terms of these axes

     J 2 = TJ 1 ? A2 x ? ?T11 T12 ? ? A1x ? ?A ? = ? ??A ? ? 2 y ? ?T21 T22 ? ? 1 y ?

     Linear Polarizer

     Allows only 1 axis (e.g. x) to pass

     J 2 = TJ 1 ? A1x ? ?1 0? ? A1x ? ? 0 ? = ?0 0 ? ? A ? ? ? ? ? ? 1y ?

     Wave Retarder (Wave Plate)

     Passes one axis (e.g. x) axis faster than other (e.g. y) ? Amount of phase retardation ?? on y axis depends on thickness

     A2 x ? ? A1x ? ?1 0 ? ? A1x ? ? A ? = ? A e ? j?? ? = ? ? ? j?? ? ? ? 2 y ? ? 1y ? ?0 e ? ? A1 y ?

     Quarter-wave Plate

     ?? = ?Ð/2 ? Convert linear ? circular

     linear to left circularly polarized 0 ? ?1? ? 1 ? ?1 ?? j ? = ?0 e ? j (?Ð / 2 ) ? ?1? ? ? ? ?? ? right circularly polarized to linear 0 ? ?1 ? ?1? ?1 ?1? = ?0 e ? j (?Ð / 2 ) ? ? j ? ?? ? ?? ?

     Half-wave Plate

     ? ??=?Ð Convert:

     ?C linear ? linear, angle depends on rotation of wave plate! ?C right ? left circular

     2X

     linear to linear @ - ?Ð ? 1 ? ?1 0 ? ?1? ?? 1? = ?0 e ? j?Ð ? ?1? ? ? ? ?? ? right circular to left circular ? 1 ? ?1 0 ? ? 1 ? ? ? j ? = ? 0 e ? j?Ð ? ? j ? ? ? ? ?? ?

     Rotation of Jones Matrices

     Previous wave plate examples had slow axis aligned with coordinate system y axis ? If the plate is rotated to another angle, the Jones matrix needs to be rotated ? Coordinate transformation or Jones vectors and matrices for rotation from old x-y system to new x??-y?? system

     y y??

     X??

     ?È x

     cos(?È ) sin (?È ) ? R(?È ) = ? ? sin (?È ) cos(?È )? ? ? ? x? ? x'? ? y '? = R(?È )? y ? ? ? ? ? ? Ax ' ? ? Ax ? ? A ? = R(?È )? A ? ? y' ? ? y? T ' = R(?È )TR(? ?È )

     Reflection and Refraction

     Polarization devices are based on reflection, refraction properties

     ?C Reflectivity depends on polarization wrt to plane of incidence

     x = TE = transverse electric = ??s?? = ger. senkrecht - perpendicular ? y = TM = transverse magnetic = ??p?? = parallel

     ?C Index of refraction depends on crystal axes

     Snells Law of Refraction

     A1x ? ? A2 x ? ? A3 x ? J1 = ? ? J 2 = ? ? J 3 = ? ? ? A1 y ? ? A2 y ? ? A3 y ? J 2 = tJ 1 J 3 = rJ 1 ?t x 0 ? ? rx 0 ? t=? ? r = ?0 r ? y? ? 0 ty ? ? notes t, r are generally complex ? A1x ? ? E1x ? ? A ? = ? E ? etc, in this analysis ? 1y ? ? 1y ? ? E2 x ? ?t x 0 ? ? E1x ? ? E3 x ? ? rx 0 ? ? E1x ? ?E ? = ? 0 t ? ?E ? ; ?E ? = ? 0 r ? ?E ? y ? ? 1y ? y ? ? 1y ? ? 2y ? ? ? 3y ? ?

     Boundary Conditions

     ?È1 = ?È 3 n1 sin ?È1 = n2 sin ?È 2

     Snell's Law Applying BC' s to TE and TM components separately yields Fresnel Equations (derivation follows) rx = n1 cos ?È1 ? n2 cos ?È 2 n1 cos ?È1 + n2 cos ?È 2 n2 cos ?È1 ? n1 cos ?È 2 n2 cos ?È1 + n1 cos ?È 2 n1 1 + ry n2 TE polarization

     t x = 1 + rx ry = ty = TM polarization

     (

     )

     1 2

     In the above equations, n1 , n2 , ?È1 are known, need cos ?È 2 = (1 ? sin 2 ?È 2 ) ? ? n ?2 ? 2 1 = ?1 ? ? ? sin ?È1 ? ? ? ? ? n2 ? ? ? ?

     1 2

     Complex values possible!

     Derivation of Fresnel Equations

     At the boundary, incident, reflected and transmitted waves all exist

     ?C Also true for both TM and TE polarizations

     Say that the relationship between amplitudes cannot depend on the position of the boundary or time ? This implies that the phases of all waves are equal at the reflection point

     Incident TE wave E1 = E1x e j (k1 ?r ??Ø1t ) Reflected TE wave E3 = E3 x e j (k 3 ?r ??Ø3t ) Transmitted TE wave E 2 = E 2 x e j ( k 2 ?r ? ?Ø 2 t )

     Note on Propagation ??k?? Vectors

     In previous, have assume k is scalar that is related to wavelength as

     k= 2?Ð

     In general it is a vector quantity ? ? ? k = kx x + k y y + kz z ? And the projection onto a direction of interest k ? r = k x rx + k y ry + k z rz ? gives the propagation of each component, and

     2 2 k = k x + k y + k z2 =

    

     2?Ð

    

     where ?Ë is the wavelength in the propagation direction

     Derivation (cont.)

     Equal phases : k 1 ? r ? ?Ø1t = k 3 ? r ? ?Ø3t = k 2 ? r ? ?Ø2t In particular, if r = 0 ?Ø1 = ?Ø3 = ?Ø2 (not surprisingly!) But, if t = 0 k1 ? r = k 3 ? r = k 2 ? r From which several conclusions follow

     1. Any two components subtract to 0

     (k 1 ? k 3 ) ? r = (k 1 ? k 2 ) ? r = (k 2 ? k 3 ) ? r = 0

     which implies that k2,k3 lie in k1-r (y-z or incident) plane

     Derivation (cont.)

     2. Incident and reflected waves are in same medium, so

     k1 ? r = k 3 ? r k1r sin ?È1 = k3 r sin ?È 3 Since k1 = k3

     ?È1 = ?È 3 (angle of incidence = angle of reflection)

     Derivation (cont.)

     3. Transmitted and reflected wave propagation component equality implies??

     k2 ? r = k3 ? r k 2 r sin ?È 2 = k3 r sin ?È 3 Since k 2 = n2

    

     c c n2 sin ?È 2 = n1 sin ?È 3 = n1 sin ?È1 ( Snell' s Law)

     ; k3 = n1

    

     Continuity of Fields Parallel to Boundary Across Boundary

     Needs a sub-derivation from Maxwell??s equation analysis ? Consider normal incidence of plane wave traveling along z-axis in + direction, analyze for E fields only

     Incident normal wave Ei = E 0i e j ( k1 ? z ??Ø1t ) Reflected normal wave E r = ? E 0 r e j ( k1 ? z ??Ø1t ) Transmitted normal wave Et = E ot e j ( k 2 ? z ??Ø2t ) Note that either E or B must change sign on reflection so that E ?Á B will point in the negative z direction. E is chosen negative here.

     Gaussian Volume at Interface

     Faraday??s & Stokes?? law and Maxwell eq. implies that tangential field is continuous across interface

     Ei + E r ? Et = 0

     Example: perfectly conducting metal implies that E field vanishes on both sides of interface, thus incident and reflected waves must subtract to zero, thus phase shift upon reflection is ?Ð r r 1 dB Smooth variation Maxwell's Eq. ??ÁE = ? Ei + E r c dt

     ?Ò?Ò ? ?Á E = ?

     S S C

     1 dB c ?Ò?Ò dt S

     db dl ~ 0 db dl ~ 0

     ?Ò?Ò ? ?Á E = ?Ò E ? dr Stoke' s Law dl?ú0 0 as

     (Ei + E r )db + ?Et db + ends = ? 1 dB dbdl c dt

     assumed for differentiability of B ?Ì1,?Å1 Surface ?Ì2,?Å2

     r Et (= 0 if perfect conductor) =

     Implications of Field Continuity at Bounary

     For TE

     E1 + E3 = E2 B1 cos ?È1 ? B3 cos ?È 3 = B2 cos ?È 2

     For TM

     B1 + B3 = B2 ? E1 cos ?È1 + E3 cos ?È 3 = ? E2 cos ?È 2

     Using these relations and E = (c/n)B, the Fresnel Equations may be derived

     TE, External Reflection Coefficient

     n2>n1: coefficient is real, negative

     Mistake: arrow should be pointing down

     n2 ? n1 rx = at ?È1 = 0 n1 + n2

     TE, Internal Reflection Coefficient

     n1>n2

     rx =

     n1 ? n2 at ?È1 = 0 n1 + n2 ?

     1

     ?È c = sin ?1 ? n2 n ? ? ?

     2 1 2

     tan

     x

     2

     (sin =

     2

     ?È1 ? sin ?È c ) cos ?È1

     TM, External Reflection Coefficient

     n2>n1

     n2 ? n1 rx = at ?È1 = 0 n1 + n2 ? n2 ? ?È B = tan ? n ? 1? ? Brewster'

    s Angle

     1

     TM, Internal Reflection Coefficient

     n1>n2

     tan

     y

     2

     (sin =

     ?È1 ? sin ?È c ) cos ?È1 sin 2 ?È c

     2 2

     1

     2

     ?È B = tan ?1 ? n2 n ? ? ?

     1? ? ?È C = sin ?1 ? n2 n ? ? ? 1? ?

     Power Reflectance, Transmittance

     R = r

     2

     T = 1?R Note, also ? n2 cos ?È 2 ? 2 2 T =? ? n cos ?È ? t ?Ù t in general ? 1 ? ? 1 ? n1 ? n2 ? R =? ? n + n ? at normal incidence ? ? 1 2? E.G. glass (n2 = 1.5) / air (n1 = 1) R = 0.04

     2

     ?ÈB=tan-1(3.6)=74.5?ã

     Power Control with a Half-Wave Plate

     Linearly-polarized light is rotated by rotating wave plate ? Power not aligned with polarized axis is reflected ? In principle, fractions from 0 to 1 can be transmitted

     Incoming laser beam has linear polarization

     Beam is completely blocked at this angle.

     Thin Film Polarizers

     Optics used in femtosecond laser application ? Femtosecond pulses are stretched by thick optics, so thin film polarizer is used ? ?Ë= 700?C900 ? Tp >96% avg., ? Rs >80% avg. ? Tp/Ts >5:1

     ?Ë=775 nm

??TXTÓÉ??ÎÄ?â????ÏÂÔØ:http://www.mozhua.net/wenkubao

Report this document

For any questions or suggestions please email
cust-service@docsford.com