By Roger Reed,2014-11-20 20:28
73 views 0

    Seek simplicity, and distrust it.

    -Alfred North Whitehead

    In James R. Newman, The World of Mathematics, Vol. II,

    p. 1055, Tempus, WA: Redmond (1988).




    2.1 Mathematical Representations and Theoretical Thinking

    Measurement cannot be separated from theory. Theoretical thinking is better

    through a mathematical representation. The choice of mathematical

    representations depends on the essential features in empirical observation and

    theoretical perspective. A mathematical representation should be powerful enough

    to display stylized features to be explained and simple enough to manage its

    mathematical solution to be solved. In the history of science, theoretical

    breakthrough often introduces radical changes in mathematical representation. For

    example, physicists once considered the Euclid geometry as an intrinsic nature of

    space. Einstein's work on gravitation theory offered a better alternative of a specific non-Euclid geometry in theoretical physics.

    Mathematical representation is an integrated part of theoretical thinking. New mathematical representations are introduced under new perspectives. Newtonian

    mechanics was developed by means of deterministic representation. Probability

    representation made its way through kinetic theory of gas, statistical mechanics,

    and quantum mechanics. The study of deterministic chaos in Hamiltonian and

    dissipative systems reveals a complementary relation between these two


    There are different motives in choosing mathematical representation. For some scientists, the choice of mathematical representation is a choice of belief. Einstein refused the probability explanation of quantum mechanics because of his belief that God did not throw dice. Equilibrium economists reject economic chaos because of

    a fear that the existence of a deterministic pattern implies a failure of the perfect market. For some scientists, the issue of mathematical representation is a matter of taste and convenience. Hamiltonian formulation in theoretical economics has

    tremendous appeal because of its theoretical beauty and logical elegance. The

    discrete-time framework is dominated in econometrics because of its computational

    convenience in regression practice. For us, empirical relevance and theoretical

    generality are main drives in seeking new mathematical representations.

30Persistent Business Cycles

    The equilibrium feature of economic movements is characterized by the Gaussian distribution with a finite mean and variance. The disequilibrium features can be described by a unimodal distribution deviated from the Gaussian distribution. During a bifurcation or transition process, a U-shaped or multimodal distribution may occur under nonequilibrium conditions. We will study the deterministic and probabilistic representations for equilibrium, disequilibrium, and nonequilibrium conditions.

    2.2 Trajectory and Probability Representation of Dynamical Systems

    Both trajectory and probability representation are mathematical abstractions of

    the real world. In physics, a trajectory of a planet is an abstraction and approximation when we ignore the size of the planet and its perturbation during movement. In biologic and social science, the trajectory representation can be perceived as an average behavior over repeated observations. The same procedure of averaging can be applied to the probability representation. The probability representation holds for large ensembles with identical properties.

    People may think that deterministic and stochastic approaches are conflicting representations. One strong argument in favor of stochastic modeling in economics is a human being's free will against determinism. However, this belief ignores a simple fact that these two representations coexist in theoretical literature. For example, the wave equation in quantum mechanics is a deterministic equation. However, its wave function has a probability interpretation. Traffic flow could be described by deterministic and stochastic models that were verified by extensive experiments (Prigogine and Herman 1971).

    For a given deterministic equation, we can have both trajectory representation and probability representation.

    The choice of mathematical representation depends on the question asked in your research. If your goal is forecasting a time path, you need the trajectory representation. If your interest is their average properties such as mean and variance, you need the probability representation.

    2.2.1 Time Averaging, Ensemble Averaging, and Ergocity

    Trajectory representation can be easily visualized by a time path of an observable such as a moving particle. Probability representation is more difficult because it contains more information.

    There are two approaches to introduce the concept of probability distribution. From a repeated experiment such as the case of coin tossing, a static approach can define a probability distribution as the average outcome. Probability represents the expectation from an event or experiment. A dynamic approach can construct a histogram from a time series. A dynamic probability distribution can be revealed from a histogram if the underlying dynamic is not changing over time. The question is does the time average represent the true possibility in future events. In statistical physics, the probability distribution is described in an ensemble

    that consists of a large number of identical systems. The probability distribution is considered as an average behavior of these identical systems. In mathematical literature, if the time averaging is equal to the ensemble averaging, this property is

Report this document

For any questions or suggestions please email